
CROSS
Codes and Restricted Objects Signature Scheme

Security Details

Version 2.2 - July 31, 2025

Marco Baldi, Polytechnic University of Marche, Department of Information Engineering

Alessandro Barenghi, Politecnico di Milano, Department of Electronics, Information and Bioengineering

Michele Battagliola, Università degli Studi di Trento, Department of Mathematics

Sebastian Bitzer, Technical University of Munich, Institute for Communications Engineering

Marco Gianvecchio, Politecnico di Milano, Department of Electronics, Information and Bioengineering

Patrick Karl, Technical University of Munich, Chair of Security in Information Technology

Felice Manganiello, Clemson University, School of Mathematical and Statistical Sciences

Alessio Pavoni, Polytechnic University of Marche, Department of Information Engineering

Gerardo Pelosi, Politecnico di Milano, Department of Electronics, Information and Bioengineering

Federico Pintore, Università di Trento, Department of Mathematics

Paolo Santini, Polytechnic University of Marche, Department of Information Engineering

Jonas Schupp, Technical University of Munich, Chair of Security in Information Technology

Edoardo Signorini, Telsy S.p.A.

Freeman Slaughter, Clemson University, School of Mathematical and Statistical Sciences

Antonia Wachter-Zeh, Technical University of Munich, Institute for Communications Engineering

Violetta Weger, Technical University of Munich, Department of Mathematics

1

CROSS NIST Submission 2025

Contents

1 Introduction 2

2 Notation 2

3 Hardness Assumption: Restricted Decoding 3
3.1 Solvers for R-SDP . 3

3.1.1 Collision Search-based Solver . 4
3.1.2 Representation Technique-based Solver . 5

3.2 Solvers for R-SDP(G) . 9

4 Proof of Security 14
4.1 Basics on ZK protocols . 14
4.2 Security of the Protocol . 15
4.3 Signature Scheme Security in General . 18
4.4 Security of the Signature Scheme . 19
4.5 Forgery Attacks . 20
4.6 Finite Regime Cost of a Forgery . 24

5 Bibliography 25

A Proof of NP-Completeness 26

1

CROSS NIST Submission 2025

1 Introduction

This document provides a thorough security analysis of CROSS. It aims to provide a detailed understand-
ing and to stimulate further research. The security of CROSS relies on two assumptions: The hardness
of restricted decoding and the security of a ZK protocol. This security guide is structured accordingly.

Hardness of restricted decoding: Section 3 analyzes the computational cost of solving restricted
decoding problems. Section 3.1 provides a detailed analysis of state-of-the-art solvers, Section 3.2 is
dedicated to the subgroup variant of the problem. Finally, it is shown that the parameters of CROSS
attain the corresponding security levels with respect to these attacks.

Security proof and forgeries: Section 4.4 shows that CROSS is EUF-CMA secure and analyses the
security loss due to the Fiat-Shamir transform. Section 4.5 describes two forgery attacks against the
underlying identification protocol and the signature obtained by applying the Fiat-Shamir transform.
The latter is based on a novel attack from [5] and its cost estimate is used for the selection of CROSS
parameters.

Artifacts: Scripts for reproducing the attack costs, including all presented figures and tables are avail-
able at https://www.cross-crypto.com/resources.

2 Notation

The security guide uses the same notation as the main specification. Vectors and matrices are denoted
as bold lowercase and bold capital letters, respectively. Furthermore, elements, vectors, and matrices in
Fz are overlined. Table 1 provides a quick reference for the remaining notation used.

Table 1: Mathematical notation

Symbol Meaning

p, z Prime numbers, z < p

Fp Finite field with p elements

F∗
p Multiplicative group, Fp \ {0}

Fz Finite field with z elements

E Cyclic subgroup of (F∗
p, ·), with generator g of order z

E0 E ∪ {0}
⋆ Component-wise multiplication

G Subgroup of (En, ⋆) of size zm

Idℓ Identity matrix of size ℓ× ℓ

n Code length and length of restricted vectors

m Size of the subgroup G is zm, m < n

k Code dimension, with k < n

λ Security parameter

t Number of rounds

w Weight of the second challenge

B(t,w) Hamming sphere of vectors in Ft
2 with radius w

P(A) Probability of the event A

poly(|x|) Polynomial-time complexity 2O(log(|x|))

2

https://www.cross-crypto.com/resources

CROSS NIST Submission 2025

3 Hardness Assumption: Restricted Decoding

CROSS utilizes restricted decoding problems of the following form.

Problem 1. Restricted Syndrome Decoding Problem (R-SDP)

Let g ∈ F∗
p be of order z, H ∈ F(n−k)×n

p , s ∈ Fn−k
p , and E = {gi | i ∈ {1, . . . , z}} ⊂ F∗

p.

Does there exist a vector e ∈ En such that eH⊤ = s?Po

It can be shown that R-SDP is NP-complete.

Theorem 2. The R-SDP (Problem 1) is NP-complete.

For the proof, we refer the interested reader to Appendix A. In fact, this result is not surprising since
R-SDP is tightly connected to other well-known decoding problems. In particular, for z = p − 1, we
recover syndrome decoding with full weight. For z = 2, R-SDP is related to the subset sum problem
over finite fields. CROSS uses R-SDP with p = 127 and z = 7.

R-SDP can be generalized by considering a subgroup (G, ⋆) ≤ (En, ⋆), where ⋆ denotes component-wise
multiplication. Let a1, . . . ,am ∈ En. For some m ≤ n, we define the subgroup as

G = ⟨a1, . . . ,am⟩ =
{
⋆mi=1a

ui
i | ui ∈ Fz

}
.

A variant of CROSS uses this generalization, to which we refer as R-SDP(G).

Problem 3. Restricted Syndrome Decoding Problem with Subgroup (R-SDP(G))

Let G = ⟨a1, . . . ,am⟩, for ai ∈ En, H ∈ F(n−k)×n
p , and s ∈ Fn−k

p .

Does there exist a vector e ∈ G with eH⊤ = s?

For m = n, R-SDP (Problem 1) is recovered. CROSS uses R-SDP(G) with m < n, p = 509 and z = 127.
Technically, CROSS relies on the hardness of the following computational version with a planted solution.
Note that m = n recovers R-SDP.

Problem 4. Computational R-SDP and R-SDP(G)

Let G = ⟨a1, . . . ,am⟩ with ai ∈ En. Further, let H ∈ F(n−k)×n
p , and s = e∗H⊤ ∈ Fn−k

p with e∗ ∈ G.

Find a vector e such that e ∈ G and eH⊤ = s.

Expected number of solutions. The number of valid solutions is crucial for the computational
hardness of solving R-SDP and R-SDP(G). We quantify the expected number of solutions in the following
theorem, for which the case of R-SDP can be recovered by setting G = En, i.e., m = n.

Theorem 5 ([22]). Let an R-SDP instance be given withG = ⟨a1, . . .am⟩, H ∈ F(n−k)×n
p , and s = e∗H⊤,

where e∗ ∈ G. Then, the number of solutions of this instance is a random variable over the choice of H
with expected value

zm − 1

pn−k
+ 1.

Proof. We have at least one solution, e∗. Thus, the probability of e = e∗ to be a solution is one, i.e.,
P(eH⊤ = s) = 1. For any other restricted vector e ∈ G \ {e∗}, this probability is P(eH⊤ = s) = pk−n,
assuming that H is chosen uniform at random. Due to the linearity of the expectation, the expected
number of solutions is given by ∑

e∈G

P(eH⊤ = s) =
zm − 1

pn−k
+ 1.

3.1 Solvers for R-SDP

This section discusses state-of-the-art solvers for R-SDP and derives estimates for their computational
complexity. The presented solvers lie at the intersection of Information Set Decoding (ISD) [7, 8, 11, 26]
and the best-known solvers for the subset sum problem [6, 16]. These solvers have been adapted to

3

CROSS NIST Submission 2025

R-SDP in [10] for the particular case of z ∈ {2, 4, 6} and in [3] for arbitrary values of z. Here, we focus
on the parameter choice of CROSS, which uses

p = 127 and z = 7, that is E = {1, 2, 4, 8, 16, 32, 64}.

This choice avoids weaker instances, such as E being a subfield; see [10, 21].

Combinatorial attacks: This section focuses on combinatorial solvers since those yield the best per-
formances for R-SDP. A detailed study of algebraic solvers can be found in [9], which comes to the
conclusion that Gröbner bases, even using hybrid techniques, are not competitive.

Quasi-systematic form: All modern ISD algorithms use a parity-check matrix in quasi-systematic
form [13]. To bring an arbitrary parity-check matrix H into this form, one applies a permutation to its
columns by computing HP with P a n× n permutation matrix. Using partial Gaussian elimination, an

invertible U ∈ F(n−k)×(n−k)
p is determined that transforms HP into

UHP = H′ =

(
Idn−k−ℓ H1

0 H2

)
,

where H1 ∈ F(n−k−ℓ)×(k+ℓ)
p and H2 ∈ Fℓ×(k+ℓ)

p . The same transformation is applied to the syndrome,
i.e., one computes

Us = s′ =

(
s1
s2

)
,

where s1 ∈ Fn−k−ℓ
p and s2 ∈ Fℓ

p. This inherently splits the unknown error vector e into e1 ∈ En−k−ℓ and

e2 ∈ Ek+ℓ with eP⊤ = (e1, e2). That is, we get the system of two equations

e1 + e2H
⊤
1 = s1 and

e2H
⊤
2 = s2.

To solve this system, one enumerates solutions e2 of the second equation e2H
⊤
2 = s2 and checks for each

one if the remaining e1 = s1 − e2H
⊤
1 completes it to a valid, i.e., restricted, solution. In the following,

we discuss two methods for enumerating candidates e2.

3.1.1 Collision Search-based Solver

A meet-in-the-middle strategy can be used to enumerate the solutions. This approach was applied to
hard knapsacks by Horowitz and Sahni [15] and adopted for the syndrome decoding problem by Stern
[26] and Dumer [11]. For the adaption to R-SDP, we define the lists

La :=
{
(ea, (ea, 0)H

⊤
2) | ea ∈ E⌊

k+ℓ
2 ⌋

}
and

Lb :=
{
(eb, s2 − (0, eb)H

⊤
2) | eb ∈ E⌈

k+ℓ
2 ⌉

}
,

which contain La = |La| = z⌊
k+ℓ
2 ⌋ and Lb = |Lb| = z⌈

k+ℓ
2 ⌉ elements, respectively. We refer to the second

entry of each tuple as the label of the list element. Using a hashmap or sorting, one finds collisions
between the labels of La and Lb, each of which yields a e2 = (ea, eb) that satisfy e2H

⊤
2 = s2.

As described previously, each such partial solution is then checked if it extends to a solution of the
original problem.

Theorem 6. The discussed collision-based solver COLL requires at least

MCOLL(p, n, k, z) = La ·
⌊
k + ℓ

2

⌋
· log2(z).

bits of memory. The required number of binary operations is bounded from below as

CCOLL ≥ min
0≤ℓ≤n−k

Ca + Cb + Cc

1 + (zn − 1)pk−n
log2(MCOLL(p, n, k, z)),

4

CROSS NIST Submission 2025

where Ca, Cb and Cc are bounded as

Ca ≥ La ·
(⌊

k+ℓ
2

⌋
· log2(z) + ℓ · log2(p)

)
,

Cb ≥ Lb ·
(⌈

k+ℓ
2

⌉
· log2(z) + ℓ · log2(p)

)
,

Cc ≥ La · Lb · p−ℓ · (k + ℓ) log2(p).

Proof. To perform the collision search, the algorithm has to store the smaller list among La and Lb.
Since this list contains dense vectors of length

⌊
k+ℓ
2

⌋
with entries in E, at least

⌊
k+ℓ
2

⌋
log2(z) bits are

required per list element. This gives the bound on the memory cost.

Let us consider the solver’s time complexity, estimated as the cost of finding a particular solution divided
by the number of solutions. According to Theorem 5, the average number of solutions is given by
1 + (zn − 1)pk−n.

First, one computes for each error vector ea associated with list La the corresponding syndrome (ea,0)H
⊤
2 .

The error vectors have a size of
⌊
k+ℓ
2

⌋
· log2(z) bit and the syndromes a size of ℓ · log2(p) bit. Hence, we

estimate the required number of binary operations as La ·
(⌊

k+ℓ
2

⌋
· log2(z) + ℓ · log2(p)

)
.

Next, the syndromes s2− (0, eb)H
⊤
2 of the error vectors eb associated with list Lb are calculated. Again,

due to the size of the objects, this requires at least Lb

(⌈
k+ℓ
2

⌉
· log2(z) + ℓ · log2(p)

)
binary operations.

Solutions e2 of the small instance are obtained by performing a collision search, i.e., (ea,0)H
⊤
2 =

s2 − (eb,0)H
⊤
2 . On average, La · Lb · p−ℓ collisions are found. For each collision, one checks whether

e2 = (ea, eb) extends to a solution of the original problem. Even for false positives, one has to calculate
at least one syndrome symbol of the complete instance, which is the sum of k+ ℓ elements of Fp. Hence,
this step requires at least La · Lb · p−ℓ · (k + ℓ) log2(p) binary operations.

Finally, the memory access cost is modeled with the conservative logarithmic cost model [2, 12]. That
is, the cost per iteration is increased by a factor log2(MCOLL(p, n, k, z)).

3.1.2 Representation Technique-based Solver

Overview: We now analyze a more elaborate multi-level algorithm inspired by [6, 7, 14, 16]. This
algorithm uses representations from a sum partition instead of the above set partition. That is, one
writes the solution to the smaller instance as e2 = ea+eb, where ea and eb are suitably chosen vectors of
length k + ℓ, the supports of which may overlap. Then, there are multiple pairs (ea, eb), which follow a
chosen distribution and sum to e2. Since it is sufficient to obtain a single copy of e2 to solve the problem,
it is sufficient to enumerate only a fraction of all possible pairs (ea, eb). For a detailed introduction to
the representation technique, the reader is referred to [22].

Picking the ambient space: To minimize the number of vectors that must be enumerated and, hence,
the computational complexity, we tailor the representation technique to the restricted case. Similar
to [6], it can be beneficial to construct lists of vectors with entries that are not in E0 but in D, where
D ⊆ {a−b | a, b ∈ E}\E0 is a carefully chosen set, which allows for an increased number of representations.
We denote by zD the size of the chosen D.

Example 7. CROSS utilizes p = 127 and E = {1, 2, 4, 8, 16, 32, 64}. We pick

D = {a− b | a, b ∈ E} \ E0 = {2i1 − 2i1+i2 | i1 ∈ {0, . . . , 6}, i2 ∈ {1, . . . , 5}},

which contains zD = 35 elements.

Counting representations: To determine the number of representations of an error vector as a sum
of vectors in (E0 ∪ D)k+ℓ, we quantify the additive structure of E and D in the following. For this, we
determine the number of possibilities to write an element a ∈ E as b+ c with b, c ∈ E and the number of
possibilities to write it as b+ c̃ with b ∈ E, c̃ ∈ D. These quantities are denoted by

αE(a) := |{b ∈ E | ∃c ∈ E : b+ c = a}|,
αD(a) := |{b ∈ E | ∃c̃ ∈ D : b+ c̃ = a}|.

For the chosen E in CROSS, we note that these quantities do not depend on the choice of a ∈ E. Thus,
we simply write αE and αD.

5

CROSS NIST Submission 2025

ea + eb
vi di

vi/2 di/2δi+1νi+1

ea

eb

Figure 1: Illustration for counting the number of representations on level i.
Entries in E are drawn in red, entries in D are drawn in blue.

Example 8. Let E = {1, 2, 4, 8, 16, 32, 64} and D be as chosen in Example 7. Then, αE = 1 since 2a ∈ E
for all e ∈ E. For any element a ∈ E there exists five elements c̃ ∈ D such that c̃+ a ∈ E; hence, αD = 5.
More generally, there is a D̃ of size zD̃ = z · s with s ∈ {1, . . . , 5} such that αD̃ = s.

We now have all the necessary preliminaries to count the number of representations, as stated in the
following lemma.

Lemma 9. Let e ∈ (E0 ∪ D)k+ℓ have vi entries from E and di entries from D. Further, we let νi+1 =
vi+1 − vi

2 and δi+1 = di+1 − di

2 . Then, there are

r =

(
vi

vi+1

)(
vi+1

2νi+1

)
α
2νi+1

E ·
(
vi/2− νi+1

δi+1

)2

· α2δi+1

D

(
di
di/2

)
possibilities for picking ea, eb ∈ (E0 ∪ D)k+ℓ such that ea, eb each have vi+1 entries in E, di+1 entries in
D, and ea + eb = e.

Proof. The counting of the number of representations is depicted in Figure 1. For the vi entries of e
living in E, we choose vi+1 = vi/2 + νi+1 entries in ea and distribute inside these vi+1 entries the 2νi+1

overlaps with entries of eb in E. By definition, there are α
2νi+1

E ways of choosing the 2νi+1 entries.

Then, out of the non-selected vi − vi+1 entries of e in E, we choose δi+1 many entries of ea for overlaps
with entries in e(2). This step is repeated for eb, for which we pick δi+1 entries of ea in E. By definition,

there are again α
2δi+1

D choices for these entries.

Finally, we split the di entries of e living in D into di/2 entries of ea living in D, which then also fixes
the remaining di/2 entries of eb in D.

Multi-level solver: We now describe how the multi-level algorithm proceeds in the case of four levels.
We also tried more levels; however, increasing the number of levels further did not yield an improved
finite regime performance. The compositions of the levels are connected via

v0 = k + ℓ, v1 = v0/2 + ν1, v2 = v1/2 + ν2, v3 = v2/2,
d0 = 0, d1 = d0/2 + δ1, d2 = d1/2 + δ2, d3 = d2/2,

where ℓ, ν1, ν2, δ1 and δ2 are internal parameters which can be optimized. The parameter ℓ denotes the
redundancy of the small instance due to the partial Gaussian elimination, and νi and δi correspond to
the “overlapping” number of entries in E, respectively in D on level i.

Then, according to Lemma 9, the number of representations for level 1, i.e., r1, and the number of
representation for level 0, i.e., r0, are given by

r1 =

(
v1
v2

)(
v2
2ν2

)
α2ν2

E

(
v1 − v2

δ2

)2

α2δ2
D

(
d1

d1/2

)
,

r0 =

(
v0
v1

)(
v1
2ν1

)
α2ν1

E

(
v0 − v1

δ1

)2

α2δ1
D .

The algorithm operates as follows:

6

CROSS NIST Submission 2025

Level 3: The algorithm prepares the base lists L3. The elements of the base lists are vectors of length
k+ℓ
2 which contain v3 entries of E and d3 entries of D. Each base list has the same size, being

L3 =

(
(k + ℓ)/2

v3, d3

)
zv3zd3

D ,

where
(
(k+ℓ)/2
v3,d3

)
=

(
(k+ℓ)/2
v3+d3

)
·
(
v3+d3

v3

)
denotes the trinomial coefficient.

Level 2: Two base lists are merged into a list by performing a concatenation merge on ℓ1 symbols. We
refer to the resulting list as L2, which contains vectors of length k + ℓ with v2 entries of E and d2
entries of D. The lists L2 have sizes

L2 =

(
k + ℓ

v2, d2

)
zv2zd2

D p−ℓ1 ,

where ℓ1 = logp(r1) guarantees that one representation of the final solution in L2 survives the
merge on average.

Level 1: The algorithm creates lists by performing a representation merge of two level-2 lists on ℓ0
syndrome symbols. We refer to the resulting list as L1, which contains vectors of length k+ ℓ with
v1 entries of E and d1 entries of D. The lists L1 have size

L1 =

(
k + ℓ

v1, d1

)
zv1zd1

D p−ℓ0−ℓ1 ,

where ℓ0 = logp(r0)− ℓ1 guarantees that one representation of the final solution in L1 survives the
merge on average.

Level 0: A final representation merge on the remaining ℓ− ℓ1− ℓ0 syndrome symbols gives a solution of
the small instance, i.e., vectors e2 of length k+ℓ with entries solely from E that satisfy e2H

⊤
2 = s2.

The following theorem summarizes the computational cost of the presented solver.

Theorem 10. The presented representation-based solver REPR uses at least

MREPR(p, n, k, z) = max
i∈{3,2,1}

{Li(vi log2(z) + di log2(zD))} .

bits of memory. The computational complexity of the algorithm can be bounded from below as

CREPR(p, n, k, z) = min
ℓ,ν1,ν2,δ1,δ2

{
C3 + C2 + C1 + C0

1 + (zn − 1)pk−n
log2(MREPR(p, n, k, z))

}
,

where Ci denotes the cost associated with level i, which are given as

C3 ≥ 2 · L3(ℓ1 log2(p) + v3 log2(z) + d3 log2(zD)),

C2 ≥ 2 · L2(ℓ0 log2(p) + v2 log2(z) + d2 log2(zD)),

C1 ≥ 2 · (L2)
2 · p−ℓ0 log2(p),

C0 ≥ (L1)
2 · p−(ℓ−ℓ0−ℓ1) log2(p).

Proof. To perform the collision search, the solver stores at least one of the lists on levels 1, 2, and 3.
The final list does not need to be stored, as it can be checked on the fly. On level 3, elements of the base
lists L3 require at least (v3 log2(z) + d3 log2(zD)) bits of memory. Similarly, each element of L2 requires
at least (v2 log2(z) + d2 log2(zD)) bits, and each element of L1 requires at least (v1 log2(z) + d1 log2(zD))
bits. This gives the bound on the memory cost MREPR(p, n, k, z).

Let us now consider the time complexity of the algorithm:

Level 3: The base lists L3 are constructed. Similar to the collision-based solver, one constructs at least
two such lists to perform the first concatenation merge. For each element, which has size of at
least (v3 log2(z) + d3 log2(zD)) bits, one calculates a partial syndrome in Fℓ1

p . This gives the lower
bound on the cost C3.

7

CROSS NIST Submission 2025

Level 2: A concatenation merge is performed on the base lists, resulting in L2 = (L3)
2 · p−ℓ1 collisions.

For each collision, one obtains an error vector, which has a size of at least (v2 log2(z)+d2 log2(zD))
bits, and calculates a partial syndrome in Fℓ0

p . Again, this step has to be performed at least twice
to continue to lower levels. Hence, we obtain the bound on C2.

Level 1: List L2 are merged on ℓ0 syndrome symbols. This representation merge yields on average
(L2)

2pℓ0 collisions. Taking into account early abort techniques [8], we conservatively estimate the
cost per collision as a single field addition: at least one entry of the error vector has to be added
to determine whether the sum of the vectors is well-formed. Considering that this step needs to
be performed twice, we obtain the lower bound on C1.

Level 0: One performs a final representation merge between two lists L1 on the remaining ℓ − ℓ0 − ℓ1
syndrome symbols of the small instance. This representation merge yields on average (L1)

2 ·
p−(ℓ−ℓ0−ℓ1) collisions. Again, we conservatively estimate the cost per collision as a single field
addition.

Finally, the memory access cost is modeled with the conservative logarithmic cost model [2, 12]. That
is, the cost per iteration is increased by a factor log2(MREPR(p, n, k, z)).

A comment on success probability: The parameters ℓ0 and ℓ1 are selected such that the average
number of surviving representations is one. Nevertheless, there is a non-zero probability that no repre-
sentation survives. These probabilities can be compensated by performing a (small) number of iterations,
the cost of which is disregarded in the presented analysis.

Shifting E: An R-SDP instance can be transformed into an instance with a modified restriction. Denote
the columns of H as h0, . . . ,hn−1, set x = (x, . . . , x) ∈ Fn

p , and define

H̃ =
(
h0 · gi0 , . . . , hn−1 · gin−1

)
and s̃ = s+ xH⊤.

Then, ẽ = e ⋆ (gi0 , . . . , gin−1)− x is a solution to the modified R-SDP instance with parity-check matrix

H̃, syndrome s̃ and restriction Ẽ = {e− x | e ∈ E}. That is, the restricted error vector e ∈ En is shifted
by x. Therefore, by selecting x ∈ E, one can construct a modified instance with a solution that contains
zeros. We denote set the non-zero entries of the shifted errors as

Ex := {a− x | a ∈ E} \ {0}.

Solving shifted instances: In the following, we elaborate on how shifted instances can be solved
using modified variants of the presented solvers. The Hamming weight of the modified instance follows
a binomial distribution, i.e., we have

P(wtH(ẽ) = w) =

(
n
w

)
(z − 1)w

zn
∀w ∈ {0, . . . , n}.

In particular, the weight of ẽ2, i.e., the shifted error restricted to the small instance, is also binomially
distributed. Therefore, it is sufficient to enumerate solutions of the small instance with weight v0, where
0 ≤ v0 ≤ k + ℓ, in order to succeed with probability

P(wtH(ẽ2) = v0) =

(
k + ℓ

v0

)
(z − 1)v0z−k−ℓ.

The total cost of the solver is then the cost of a single iteration divided by the success probability. For
the collision-based solver, the required number of iterations compensates the decreased cost per iteration.
Therefore, shifting does not provide a speed-up.

The representation-based solver, however, benefits from the zeros since intermediate lists inherently
use error vectors that are not of full weight. The cost per iteration can be computed as given in
Theorem 10. It remains to analyze the structure of the shifted errors in Ex and the supplementary
elements in Dx ⊆ {b− a | a, b ∈ Ex} \ (Ex ∪ {0}).

8

CROSS NIST Submission 2025

Table 2: Bit-complexity estimates for solvers of R-SDP with parameters as used by CROSS. The restric-
tion is given by E = {1, 2, 4, 8, 16, 32, 64} ⊂ F127.

Category
Parameters

Solver
Solver parameters Cost [bit]

n k ℓ v0 v1 v2 v3 d1 d2 d3 Time Mem.

NIST 1 127 76
COLL 20 96 48 149 141
REPR 48 128 70 36 18 4 2 1 162 153

shift REPR 33 72 40 20 10 143 117

NIST 3 187 111
COLL 28 139 69 213 201
REPR 69 180 104 54 27 4 2 1 229 214

shift REPR 45 104 56 28 14 207 169

NIST 5 251 150
COLL 38 188 94 281 271
REPR 90 240 136 70 35 4 2 1 301 275

shift REPR 68 152 84 42 21 274 234

Example 11. CROSS utilizes the error set E = {1, 2, 4, 8, 16, 32, 64} ⊂ F127 with size z = 7 and additivity
αE = 1. Shifting by x = 1, the error entries are either zero or lie in the modified error set

E1 = {1, 3, 7, 15, 31, 63}.

Unlike its parent E, the modified error set does not possess an additive structure. This holds for shifting
by x = 1 as well as any other x ∈ E.

Previous to shifting, E had a difference set D of size zD = 35 and additivity αD = 5. After shifting, we
obtain Dx of size zDx = 30 with αDx = 5.

Expected security strength: Table 2 presents the computational cost of the presented solvers. The
optimized solver parameters are given and can be reproduced using the code available at https://www.
cross-crypto.com/resources. The combination of representation technique and shifting yields the
best performance for each of the parameter sets, which achieve NIST security categories 1, 3, and 5.

3.2 Solvers for R-SDP(G)

In this section, we extend the discussion of the computational hardness of R-SDP to R-SDP(G). The
focus lies on R-SDP(G) as used by CROSS which utilizes

p = 509 and z = 127, that is E = {16i | i ∈ {1, . . . , 127}}.

Not considering G: A first naive approach to solving R-SDP(G) would be to enumerate the solutions
of the corresponding R-SDP instance, completely dismissing G. Such solutions can be generated, e.g.,
using the solvers presented in Section 3.1 or an adaption of Wagner’s algorithm [27]. Then, for each
solution in En, it is checked whether e ∈ G. Note, however, that dismissing G implies that an instance
with 1+(zn−1)pk−n solutions is solved, out of which only 1+(zm−1)pk−n solve the original R-SDP(G)
instance (see Theorem 5).

Example 12. For the parameters p = 509, z = 127, m = 25 and n = 55, k = 36, there are 2213 solutions
in En, while we expect 15.7 solutions in G on average. Hence, on average, 2209 solutions in En must be
enumerated to find a valid solution for the R-SDP(G) instance.

Collision search with subgroup G: As discussed above, suitably chosen parameters ensure that
disregarding G results in costs exceeding the required security levels. In the following, we present a

method for incorporating G into a collision-based solver. To this end, let H ∈ F(n−m)×n
z denote a

full-rank matrix such that
vH

⊤
= 0 ⇐⇒ gv ∈ G.

Thus, H acts like a parity-check matrix for G and, as such, can be used in a collision-based solver.

9

https://www.cross-crypto.com/resources
https://www.cross-crypto.com/resources

CROSS NIST Submission 2025

BothH andH are transformed into quasi-systematic form. To achieve this, the same column permutation
is applied using P ∈ Fn×n

p and P ∈ Fn×n
z . Through partial Gaussian elimination, invertible matrices

U ∈ F(n−k)×(n−k)
p and U ∈ F(n−m)×(n−m)

z are determined such that

U H P = H′ =

(
Idn−k−ℓ H1

0 H2

)
, Us = s′ =

(
s1
s2

)
, and

U H P = H
′
=

(
Idn−m−ℓ H1

0 H2

)
,

where ℓ := max{0, k + ℓ−m}. The submatrices have dimensions H1 ∈ F(n−m−ℓ)×(k+ℓ)
z , H2 ∈ Fℓ×(k+ℓ)

z ,

H1 ∈ F(n−k−ℓ)×(k+ℓ)
p , and H2 ∈ Fℓ×(k+ℓ)

p . We define the lists

La :=

{(
ea, (ea, 0)H

⊤
2 , (gea , 0)H⊤

2

)
| ea ∈ F⌊

k+ℓ
2 ⌋

z

}
, and

Lb :=

{(
eb,−(0, eb)H

⊤
2 , s2 − (0, geb)H⊤

2

)
| eb ∈ F⌈

k+ℓ
2 ⌉

z

}
,

which contain La := |La| = z⌊
k+ℓ
2 ⌋ and Lb := |Lb| = z⌈

k+ℓ
2 ⌉ elements, respectively. Here, the second and

the third components of each list element form the corresponding label. A concatenation (ea, eb) ∈ Fk+ℓ
z

results in a solution of the small instance if and only if both parts of the corresponding labels match:

(ea, 0)H
⊤
2 = − (0, eb)H

⊤
2 ⇐⇒ (ea, eb)H

⊤
2 = 0,(

gea , 0
)
H⊤

2 = s2 −
(
0, geb

)
H⊤

2 ⇐⇒ (gea , geb)H⊤
2 = s2.

Hence, solutions of the small instance can be found via a collision search performed on the label of the

list elements. Since the labels live in Fℓ
z × Fℓ

p, this search yields on average

La · Lb

zℓ · pℓ
= zk+ℓ−ℓp−ℓ

collisions, which are extended to the complete instance.

Theorem 13. The presented collision-based solver COLL(G) requires at least

MCOLL(G)(p, n, k, z,m) = La ·
⌊
k + ℓ

2

⌋
· log2(z)

bits of memory. The number of binary operations can be bounded from below as

CCOLL(G)(p, n, k, z,m) = min
ℓ

{
Ca + Cb + Cc

1 + (zm − 1) pk−n
log2

(
MCOLL(G)(p, n, k, z,m)

)}
,

where Ca, Cb and Cc are bounded as

Ca = La ·
(⌊

k + ℓ

2

⌋
· log2(z) + ℓ · log2(z) + ℓ · log2(p)

)
,

Cb = Lb ·
(⌈

k + ℓ

2

⌉
· log2(z) + ℓ · log2(z) + ℓ · log2(p)

)
,

Cc = La · Lb · z−ℓ · p−ℓ · (k + ℓ) · log2(p),

with ℓ = max{0, k + ℓ−m}.

Proof. To perform the collision search, the algorithm has to store the smaller list among La and Lb.
Since this list contains dense vectors of length

⌊
k+ℓ
2

⌋
with entries in E, at least

⌊
k+ℓ
2

⌋
log2(z) bits are

required per list element. This gives the bound on the memory cost.

10

CROSS NIST Submission 2025

Ja Jb

U H P =

1

0
ℓ = ρa + ρb −m

da
db

0

0

0
0

H1

H2

Ba

0 Bb

0

ea eb

gea geb

U H P =

1

0 H2

H1

ℓ = ja + jb − k

s1

s2

Figure 2: Illustration of the collision-based solver with subgroup G and small-support subcodes.

Let us consider the solver’s time complexity, estimated as the cost of finding a particular solution divided
by the number of solutions. According to Theorem 5, the average number of solutions is given by
1 + (zm − 1)pk−n.

First, one computes two syndromes for the error vectors ea associated with list La. Each error vector
has a size of

⌊
k+ℓ
2

⌋
· log2(z) bit. The syndromes have sizes ℓ · log2(p) bit and ℓ · log2(z) bit. Hence, we

estimate the required number of binary operations as La ·
(⌊

k+ℓ
2

⌋
· log2(z) + ℓ · log2(z) + ℓ · log2(p)

)
.

Next, two syndromes are computed for each error vector eb associated with list Lb. Again, due to the
size of the objects, this requires at least Lb ·

(⌈
k+ℓ
2

⌉
· log2(z) + ℓ· log2(z) + ℓ · log2(p)

)
binary operations.

The collision search yields on average La · Lb · z−ℓ · p−ℓ partial solutions. For each collision, one checks
whether e2 extends to a solution of the complete problem. Even for false positives, one has to calculate
at least one syndrome symbol of the complete instance, which is the sum of k+ ℓ elements of Fp. Hence,
this step requires at least La · Lb · p−ℓ · (k + ℓ) · log2(p) binary operations.

Finally, the memory access cost is modeled with the conservative logarithmic cost model [2, 12]. That
is, the cost per iteration is increased by a factor log2(MCOLL(G)(p, n, k, z)).

Collision search with subgroup G and small-support subcodes: While COLL(G) uses a random
permutation, the solver’s computational cost can be reduced by choosing the permutation based on the
structure of G. This improvement is illustrated in Figure 2.

The attacker begins by searching for a public key with a subgroup G, for which ⟨H⟩ contains two subcodes
with the following properties:

• The first subcode is of dimension da and has a support Ja of size ja = |Ja|. Hence, this first
subcode is generated by (0Ba 0) with Ba ∈ Fda×ja

z .

• The second subcode is of dimension db and has a support Jb of size jb = |Jb|. Hence, the second
subcode is generated by (0Bb 0) with Bb ∈ Fdb×jb

z .

• The supports Ja and Jb are disjoint.

11

CROSS NIST Submission 2025

Due to the obvious connection to the codeword finding problem, the decisional version of this problem can
be shown to be NP-complete itself [3, Theorem 2]. The best-known approach to solving the computational
version is given by information set decoding. Any solver can only succeed if such subcodes indeed exist
for a given G. In accordance with [25, Theorem 1], we estimate that a subcode of dimension d and
support size j exists with probability

P (j, d) = min

{(
n

j

)
(zd − 1)j−d

[
n−m

d

]
z
[nd]

−1
z , 1

}
,

where [nd]z denotes the Gaussian binomial, computed as

[nd]z =

d∏
i=1

qn−i+1 − 1

qi − 1
.

Hence, the probability that both subcodes exist in ⟨H⟩ can be upper-bounded as P (ja, da) ·P (jb, db). It
follows that (P (ja, da) · P (jb, db))

−1 many restrictions G have to be considered on average to find one
which allows for subcodes with parameters ja, da, jb, db.

Example 14. For the parameters p = 509, z = 127, m = 25 and n = 55, k = 36, a one-dimensional
subcode with support size 19 exists with probability 0.45. Further, a four-dimensional subcode with
support size 23 exists with probability 2−116.

One begins with bringing H and H into quasi-systematic form with respect to the subcodes. That is,
the column permutation is chosen such that the support of the subcodes Ja ∪ Jb is permuted to the last
ja + jb positions. Then, partial Gaussian elimination yields parity-check matrices of the form given in
Figure 2.

The submatrices have dimensions H1 ∈ F(n−m−ℓ)×(ja+jb)
z , H2 ∈ Fℓ×(ja+jb)

z , H1 ∈ F(n−k−ℓ)×(ja+jb)
p , and

H2 ∈ Fℓ×(ja+jb)
p where ℓ = ja + jb − k and ℓ := max{0, ja + jb − da − db −m}. We define ρa := ja − da,

ρb := jb − db and write ℓ := max{0, ρa + ρb −m}. One constructs the lists

La :=
{(

ea, (ea, 0)H
⊤
2 ,

(
gea , 0

)
H⊤

2

)
| ea ∈ ker(Ba)}

}
,

Lb :=
{(

eb,−(0, eb)H
⊤
2 , s2 −

(
0, geb

)
H⊤

2

)
| eb ∈ ker(Bb)}

}
.

These lists contain La = |La| = zja−da = zρa and Lb = |Lb| = zjb−db = zρb elements. Thus, the list sizes
are smaller compared to the basic collision-based solver. This also impacts the collision search, which
yields on average

La · Lb

zmax(ρa+ρb−m, 0) · pja+jb−k
=

zρa · zρb

zℓ · pℓ

partial solutions, for which one then checks whether they can be extended to a solution of the original
problem.

Theorem 15. The collision-based solver with small-support subcodes SUBC(G) requires at least

MSUBC(G)(p, n, k, z,m) = min{La · ρa, Lb · ρb} · log2(z),

bits of memory, where La = zρa and Lb = zρb . At least

CSUBC(G)(p, n, k, z,m) = min
Ja,Jb

{
Ca + Cb + Cc

1 + (zm − 1)pk−n
log2

(
MSUBC(G)(p, n, k, z,m)

)
+

1

P (ja, da) · P (jb, db)

}
binary operations are required. Ca, Cb and Cc are given by

Ca = La ·
(
ρa · log2(z) + ℓ · log2(z) + ℓ · log2(p)

)
,

Cb = Lb ·
(
ρb · log2(z) + ℓ · log2(z) + ℓ · log2(p)

)
,

Cc = La · Lb · z−ℓ · p−ℓ(ja + jb) log2(p),

where ℓ = ja + jb − k and ℓ = max{0, ρa + ρb −m}.

12

CROSS NIST Submission 2025

Table 3: Bit-complexity estimates for solvers of R-SDP(G) with parameters as used by CROSS. The
restriction is given by E = {16i | i ∈ F127} ⊂ F509.

Category
Parameters

Solver
Solver parameters Cost [bit]

n k m ℓ ℓ ja jb ρa ρb Time Mem.

NIST 1 55 36 25
COLL(G) 4 20 20 152 146
SUBC(G) 6 12 19 23 18 19 143 132

[9] 145 64

NIST 3 79 48 40
COLL(G) 9 28 29 217 203
SUBC(G) 10 15 28 30 27 28 210 196

[9] 212 96

NIST 5 106 69 48
COLL(G) 8 38 39 286 273
SUBC(G) 9 25 37 41 36 37 272 259

[9] 276 128

Proof. The cost is obtained in a similar way as in Theorem 13.

To perform the collision search, the smaller list among La and Lb is stored. Without loss of generality, we
assume in the following that this is La. Since this list contains elements of ker(Ba), at least ρa log2(z) bits
are required per list element, resulting in the bound on the memory cost MSUBC(G)(p, n, k, z,m).

Let us consider the algorithm’s time complexity CSUBC(G)(p, n, k, z,m), which is estimated as the cost of
finding a particular solution divided by the number of solutions. According to Theorem 5, the average
number of solutions is given by 1 + (zm − 1)pk−n.

First, one computes two syndromes for the error vectors ea associated with list La. Each error vector
can be represented using ρa · log2(z) bits. The label has a size of ℓ · log2(z) + ℓ · log2(p) bits with
ℓ = ja + jb − k and ℓ = max{0, ρa + ρb − m}. Hence, we estimate the required number of binary
operations as La ·

(
ρa · log2(z) + ℓ · log2(z) + ℓ · log2(p)

)
binary operations.

Next, two syndromes are computed for each error vector eb associated with list Lb. Again, due to the
size of the objects, this requires at least La

(
ρb · log2(z) + ℓ · log2(z) + ℓ · log2(p)

)
binary operations.

The collision search yields on average La · Lb · z−ℓ · p−ℓ partial solutions. For each collision, one checks
whether e2 extends to a solution of the original problem. Even for false positives, one has to calculate
at least one syndrome symbol of the original instance, which is the sum of ja+ jb elements of Fp. Hence,

this step requires at least La · Lb · z−ℓ · p−ℓ · (ja + jb) · log2(p) binary operations.

Finally, the memory access cost is modeled via the conservative logarithmic cost model [12, 2]. That is,
the cost per iteration is increased by a factor log2(MSUBC(G)(p, n, k, z,m)).

A comment on representation-based solvers: Representation-based solvers cannot utilize the struc-
ture of G in the presented way since they rely on sum partitions. Unlike concatenation, summation does
not align with the structure of the exponentiation.

Expected security strength: Table 3 presents the computational cost of the presented solvers. The
optimized solver parameters are given and can be reproduced using the code available at https://www.
cross-crypto.com/resources. The combination of collision search and small-support subcodes yields
the best performance for each of the parameter sets, which achieve NIST security categories 1, 3, and 5.
Note that the costs of the solver of [9] are given in Fp operations.

13

https://www.cross-crypto.com/resources
https://www.cross-crypto.com/resources

CROSS NIST Submission 2025

4 Proof of Security

The security proof of CROSS is split into two sections: in Section 4.2, we analyze the security of the Zero-
Knowledge ZK protocol 4 and in Section 4.4 the security of the signature scheme after the Fiat-Shamir
transform.

4.1 Basics on ZK protocols

We first recall the main definitions for ZK protocols.

Definition 16 (Interactive Proof). An interactive proof Π = (P,V) for a binary relation R ⊆ X × Y is
an interactive protocol between two probabilistic polynomial-time machines P and V.
The prover P takes as input a pair (x, y) ∈ R while the verifier V takes as input x. As the output of
the protocol - denoted by (P(y),V)(x) - V either accepts (outputs 1) or rejects (outputs 0).

We say that a transcript, i.e., the set of all messages exchanged in a protocol execution, is accepting
(rejecting) if V accepts (rejects, respectively).

Throughout this security guide, we assume that, within an execution of an interactive proof (P,V), the
prover P always sends the first and the last message. Hence, the number of communication rounds is
odd, i.e., of the form 2µ+ 1 with µ a positive integer.

We refer to an interactive proof having 2µ + 1 communication rounds with the name (2µ + 1)-round
interactive proof. In the case of CROSS, we have that µ = 2; however, since the results presented here
hold for any µ, we describe them in full generality.

Definition 17 (Public-Coin). An interactive proof Π = (P,V) is public-coin if all V’s random choices
are made public.

If an interactive proof is public-coin, the verifier needs to send to the prover only their random choices.
For this reason, we call the messages sent by the verifier challenges and refer to the set from which the
verifier’s messages are sampled as the challenge set.

In the case of a (2µ+1)−round interactive proof, we define the challenge set Ch as the Cartesian product
of µ round challenge sets Ch[i], with i ∈ {1, . . . , µ}, meaning that the challenge for the i-th round is
sampled from Ch[i].

Definition 18 (Completeness). An interactive proof Π = (P,V) for a binary relation R ⊆ X × Y is
complete if, for every (x, y) ∈ R, we have:

P[(P(y),V)(x) = 0] ≤ ρ(x),

where the completeness error ρ(x) is negligible (in |x|). If ρ(x) = 0 for all x ∈ LR, the protocol is said
to be perfectly complete.

Definition 19 (Honest-Verifier Zero-Knowledge). Let Π = (P,V) be an interactive proof system for an
hard relation R ⊆ X × Y . We say that Π is (weak) computationally honest-verifier zero-knowledge if
there exists a probabilistic polynomial time algorithm S, called the simulator, such that the following
two distribution ensembles are computationally indistinguishable:

{(x, transcript(P(x, y),V(x))) | (x, y) $←− R} and {(x,S(x)) | (x, y) $←− R},

where transcript(P(x, y),V(x)) denotes a transcript of an honest execution between a prover, knowing
both x and y, and a verifier, knowing only x.

Definition 20 (Knowledge Soundness). An interactive proof (P,V) for a binary relation R ⊆ X × Y is
knowledge-sound, with knowledge error κ, if there exists an algorithm E that, given as input any x ∈ X
and rewindable oracle access to a (potentially-dishonest) prover P∗, runs in an expected polynomial time
(in |x|) and outputs a witness y ∈ Y for x with probability:

P[(x, EP
∗
(x)) ∈ R] ≥ ε(x,P∗)− κ(x)

poly(|x|)
,

where ε(x,P∗) = P[(P∗,V)(x) = 1]. The algorithm E is called knowledge extractor.

14

CROSS NIST Submission 2025

a[1]

a1[2]

1a1[3]

1,...,1a1[µ+ 1] 1,...,1akµ [µ+ 1]

1c1[2]

1ak2
[3]

1ck2
[2]

cmt1[1]

ak1
[2]

k1
a1[3]

k1
c1[2]

k1
ak2

[3]

k1,...,kµ−1
a1[µ+ 1] k1,...,kµ−1

akµ [µ+ 1]

k1
ck2

[2]

ck1
[1]

.

.

. . .

Figure 3: Graphical representation of a (k1, . . . , kµ)−tree of transcripts for a (2µ+1)−round public-coin
interactive proof. Left subscripts represent the ancestor nodes, superscripts represent the corresponding
round, while right subscripts are used to enumerate edges originating from a node and their corresponding
arrival nodes.

Definition 21 (Tree of Transcripts). Let k1, . . . , kµ, N1, . . . , Nµ be positive integers, R ⊆ X × Y be a
binary relation and Π = (P,V) a (2µ + 1)−round public-coin interactive proof for R, where V samples
i−th challenges (i ∈ {1, . . . , µ}) from a set Ch[i] of cardinality Ni ≥ ki.

A (k1, . . . , kµ)-tree of transcripts for (P,V) is a set of K =
∏µ

i=1 ki transcripts relative to a given
statement x ∈ X, arranged in the following tree structure, where nodes correspond to prover’s messages
while edges to verifier’s challenges.

From every node at level i, with i ∈ {1, . . . , µ}, exactly ki edges originate, corresponding to ki pairwise-
distinct challenges belonging to Ch[i]. Then, each of the K transcripts corresponds to exactly one path
from the root node to a leaf node.

A graphical representation of a tree of transcripts is provided in Figure 3, where a[1] denotes the prover’s
first message, cmt1[1], . . . , cmtk1

[1] are sampled from Ch[1], and so on.

Definition 22 ((k1, . . . , kµ)-Special Soundness). Let k1, . . . , kµ, N1, . . . , Nµ be positive integers and
R ⊆ X × Y be a binary relation. A (2µ + 1)-round public-coin interactive proof (P,V) for R, where
V samples i−th challenges (i ∈ {1, . . . , µ}) from a set Ch[i] of cardinality Ni ≥ ki, is (k1, . . . , kµ)-out-
of-(N1, . . . , Nµ) special sound, or simply (k1, . . . , kµ)-special sound, if there exists a polynomial-time
algorithm that, on input a true statement x ∈ X and a (k1, . . . , kµ)-tree of accepting transcripts for
(P,V) and relative to x, outputs a witness y ∈ Y for x.

4.2 Security of the Protocol

Let us quickly recall the ZK protocol CROSS-ID in Figure 4. The protocol as well as the proofs use the
subgroup G, which also includes the R-SDP case, by setting G = En.

Proposition 23 (Completeness). The CROSS-ID protocol in Figure 4 is complete.

Proof. We have to show that the honest prover always gets accepted. When chall2 = 0, we have

y′ = v ⋆ y = v ⋆ u′ + chall1v ⋆ e′ = u+ chall1e.

So, it holds that

y′H⊤ − chall1s = uH⊤ + chall1eH
⊤ − chall1s = uH⊤ + chall1s− chall1s = uH⊤ = s′.

This indeed corresponds to the syndrome that was used to generate cmt0. Finally, we also verify that
v ∈ G. When chall2 = 1, the prover provides only seeds: since PRNGs are deterministic, the verifier
obtains the very same quantities that have been used to generate the commitment cmt1.

15

CROSS NIST Submission 2025

Private Key e ∈ G

Public Key G ⊆ En, H ∈ F(n−k)×n
p , s = eH⊤ ∈ Fn−k

p

PROVER VERIFIER

// Sampling Seed to compute e′,u′

Seed
$←− {0, 1}λ

(e′,u′)←− CSPRNG(Seed) // with co− domain G× Fn
p

// Computing v,u, s′

v←− e ⋆ (e′)−1

u←− v ⋆ u′

s′ ←− uH⊤

// Computing commitments

cmt0 ←− Hash
(
s′|v

)
cmt1 ←− Hash

(
u′|e′

)
cmt0,cmt1−−−−−−→

// Sampling first challenge
chall1←−−−− chall1

$←− F∗
p

// Computing first response

y←− u′ + chall1e
′

digesty ←− Hash(y)
digesty−−−−−→

// Sampling second challenge

chall2
$←− {0, 1}

chall2←−−−−

// Computing second response

If chall2 = 0, resp←−
(
y,v

)
If chall2 = 1, resp←− Seed

resp−−→

// Verification

If chall2 = 0:
y′ ←− v ⋆ y
s′ ←− y′H⊤ − chall1s
Accept if:

1) Hash(y) = digesty
2) Hash

(
s′|v

)
= cmt0

3) v ∈ G
If chall2 = 1:
(e′,u′)←− CSPRNG(Seed) // with co− domain G× Fn

p

y←− u′ + chall1e
′

Accept if:
1) Hash(y) = digesty
2) Hash

(
u′|e′

)
= cmt1

Figure 4: CROSS-ID

Proposition 24 (Honest-Verifier Zero-Knowledge). The CROSS-ID protocol in Figure 4 is (weak)
honest-verifier zero-knowledge in the ROM.

Proof. We prove that a simulator S with knowledge of the challenges can easily simulate the interaction
(P,V) between the prover and the verifier. Formally, we show that S produces a transcript T ∗ that
is indistinguishable from the transcript T resulting from the interaction between P and V. S starts
sampling a random bit chall2. Then, depending of the value of chall2, S does the following:

- chall2 = 0: the simulator picks a random chall1 ∈ F∗
p, then computes e∗ ∈ Fn

p such that

e∗H⊤ = s. Then, S selects a random v∗ ∈ G and a vector u∗ ∈ Fn
p , and computes u′∗ = v∗−1 ⋆ e∗.

Finally, it computes s∗′ = u∗H⊤ and cmt0 = Hash(s∗′,v∗). Then, S computes y∗ = u′∗+chall1e
′∗.

Finally, S set cmt1 as a random binary string with length 2λ. Since chall2 = 0 this commitment is

16

CROSS NIST Submission 2025

never revealed, and thus, in the ROM, this is computationally indistinguishable from an honestly
computed cmt1.

It is easy to see that the transcript produced by S (i.e., the values y∗ and v∗) follows the same
statistical distribution as those of an honestly produced transcript.

Indeed, in an honest execution, y is uniformly random over F∗
p because u′ is uniformly random

over Fn
p . This guarantees that u

′+chall1e
′ is uniformly random over Fn

p , and the same holds after
multiplying with v.

Finally, in an honest execution of the protocol, v is uniformly distributed over G. Indeed, for any
e′ ∈ G there is a unique v ∈ G such that v ⋆ e′ = e. If e′ is uniformly random over G, then v also
follows the same distribution.

- chall2 = 1: in this case, the simulator simply executes the protocol by sampling the seed and
computing cmt1 analogously to what the honest prover P would do. For the other commitment,
cmt0, it is enough to use a random binary string again.

Remark 25. Notice that, as pointed out in [20], CROSS-ID is only computationally honest-verifier
zero-knowledge, since λ-bit seeds are used in the real transcript and the number of possible values of
cmt0 and cmt1 are reduced. Moreover, since there is no randomness involved in the computation of
the commitments, CROSS-ID is only weak honest-verifier zero-knowledge. As explained in Section 4.3,
this is not a problem for the EUF-CMA security of CROSS, however this may not be sufficient when
considering advanced functionalities (e.g. ring signature), where strong honest-verifier zero-knowledge
(i.e., the ensembles of Definition 19 are indistinguishable also when the witness y is revealed) is required.

To solve this issue, it is possible to include a nonce in the computation of cmt0 and cmt1, however
doing so would lead worse performances as it would increase the signature size.

Proposition 26 (Soundness). The protocol in Figure 4 is (2, 2)-special sound.

Proof. We consider four accepting transcripts T1, T2, T3, T4, all associated with the same pair of com-
mitments cmt0, cmt1. The commitment cmt0 fixes the pair (s′,v), while the commitment cmt1 fixes the
pair (u′, e′).

We identify the transcripts by the challenge values, which we denote respectively by (chall1, 0), (chall1, 1),
(chall∗1, 0), and (chall∗1, 1). Taking into account the prover’s replies, we have that the transcripts are
structured as follows:

T1:
(
cmt0, cmt1, chall1, digesty,y,v

)
;

T2:
(
cmt0, cmt1, chall1, digesty, Seed

)
;

T3:
(
cmt0, cmt1, chall

∗
1, digest

∗
y,y

∗,v∗);
T4:

(
cmt0, cmt1, chall

∗
1, digest

∗
y, Seed

∗).
We now show that, from the knowledge of these four transcripts, a solution for the R-SDP(G) instance
{s,H} can be easily computed (i.e., in polynomial time).

We first focus on T2 and T4. Let u
′, e′ be the vectors generated from Seed, and u′∗, e′∗ those generated

from Seed∗. Since cmt1 is verified in both cases, either hash collisions have been found (i.e., Hash
(
u′, e′

)
=

Hash
(
u′∗, e′∗

)
but u′ ̸= u′∗ and/or e′ ̸= e′∗), or u′ = u′∗ and e′ = e′∗.

Since also digesty and digest∗y are checked, and unless hash collisions have been found, this guarantees
that digesty = Hash(y), where y = u′ + chall1e

′, and digest∗y = Hash(y∗), where y∗ = u′∗ +
chall∗1e

′∗ = u′ + chall∗1e
′.

This implies that y − y∗ = e′(chall1 − chall∗1).

Now, we look at the pair of transcripts T1 and T3. Unless hash collisions have been found, we have
v = v∗,

(v ⋆ y)H⊤ − chall1s = s′, and (v ⋆ y∗)H⊤ − chall∗1s = s′,

17

CROSS NIST Submission 2025

from which it follows that

v ⋆ y − y∗H⊤ = (chall1 − chall∗1)s.

Exploiting the relations we derived from the pair (T2, T4), we obtain y − y∗ = (chall1 − chall∗1)e
′,

where e′ is a restricted vector, hence

(chall1 − chall∗1)(v ⋆ e′)H⊤ = (chall1 − chall∗1s =⇒ (v ⋆ e′)H⊤ = s.

Since v, e′ have been verified, thus v, e′ ∈ G; then v ⋆ e′ ∈ G means that v ⋆ e′ solves R-SDP(G) for the
instance {H, s}.

4.3 Signature Scheme Security in General

From [4], we have that any fixed-weight repetition of a special sound protocol is knowledge-sound. In
particular, we obtain the following theorem:

Theorem 27 (Fixed-Weight Repetition of a (k1, . . . , kµ)-Special-Sound Multi-Round Interactive Proof).
Let (P,V) be a (k1, . . . , kµ)-special-sound (2µ+1)-round interactive proof and (Pt,w,Vt,w) be the (t, w)-
fixed-weight repetition of (P,V), where w, t are positive integers with 1 ≤ w ≤ t. Then (Pt,w,Vt,w) is
knowledge-sound with knowledge error κt,w, where κt,w is the maximum, taken over α ∈ {0, . . . , t}, of
the expression ∑min(w,α)

ℓ=max(0,w−t+α)

(
α
ℓ

)(
t−α
w−ℓ

)
Zℓ
0 (Z1 − Z0)

α−ℓ
(Z2)

w−ℓ(Z1 − Z2)
t−α−w+ℓ(

t
w

)
(Nµ − 1)t−w(

∏µ−1
i=1 Ni)t

,

where Z0, Z1, Z2 are defined as follows:

Z0 :=

µ−1∏
ℓ=1

Nℓ,

Z1 :=

µ∑
ℓ=1

 µ∏
j=ℓ+1

Nj

 (kℓ − 1)

ℓ−1∏
j=1

(Nj − kj + 1)

 ,

Z2 :=

µ−1∑
ℓ=1

 µ−1∏
j=ℓ+1

Nj

 (kℓ − 1)

ℓ−1∏
j=1

(Nj − kj + 1)

 .

As an immediate corollary we have that CROSS is knowledge-sound.

To conclude our analysis and prove the EUF-CMA security, we need the results of [5].

Definition 28 (Security against Impersonation under Passive Attack). Let R ⊆ X × Y be a binary
relation, Π a 2µ + 1-round proof system for R and λ the security parameter. Let V the verification
function of Π, a[i] the message that the prover sends during the i−th round and Ch[i] the challenge
space of the i−th round. The impersonation experiment between a challenger and an impersonator I is
defined as follows:

18

CROSS NIST Submission 2025

Algorithm 1: Impersonation experiment ExpIΠ(λ) :

1 (x, y)
$←− R

// The impersonator receives a polynomial number of honest transcripts and

produces the first message of the protocol

2 a[1]
$←− IOTrGen

(x)
// The impersonator receives a random challenge for the round and produces the

response until the end of the protocol

3 for i← 1 to µ do

4 ch[i]
$←− Ch[i]

5 a[i+ 1]
$←− I({ch[j]}j≤i, {a[j]}j≤i)

6 end
// The impersonator wins if the transcript produced verifies correctly

7 return V(y, a, ch)

The oracle OTrGen, to which the impersonator has access, produces valid transcripts for the statement x.
We define I’s advantage as their success probability, i.e.,

AdvI
Π(λ) = P(ExpIΠ(λ) = 1).

We say that Π is polynomially-secure against impersonations under passive attack ifAdvI
Π(λ) is negligible

(in λ) for every probabilistic polynomial time impersonator I.

It is possible to prove that any public-coin interactive proof which is knowledge-sound and (weak) Honest-
Verifier Zero-Knowledge (wHVZK) is also polynomially-secure against impersonation under passive at-
tack. In particular, we have the following:

Proposition 29. Let Π be a (2µ+1)-round interactive proof system for a hard binary relation R ⊆ X×Y
which is wHVZK and knowledge-sound with knowledge error κ. Let I be a passive impersonator against
Π which makes Q queries to the transcript oracle OTrGen. Then there exists an adversary A against the
hard binary relation R such that

AdvΠ
I ≤ poly(|x|) ·AdvR

A + κ,

and the expected running time of Adv is about that of I.

Theorem 30. Let Π be a 2µ+1-rounds interactive proof system which is secure against impersonation
under passive attack. Then the signature scheme obtained by applying the Fiat-Shamir transform is
EUF-CMA. In particular, the security loss introduced by the Fiat-Shamir transform is bounded by

(
Q
µ

)
where Q is the number of hash queries the adversary is allowed to do.

4.4 Security of the Signature Scheme

We proved in Proposition 23, 24 and 26 that CROSS-ID is complete, honest-verifier zero-knowledge
and (2, 2)-special sound. Thus, thanks to Theorem 27 we have that CROSS is knowledge-sound, with
knowledge error:

min{w,α}∑
w′=max{0,w−t+α}

(
α
w′

)(
t−α
w−w′

)(
t
w

) (
1

p− 1

)(α−w′)+(w−w′)

.

By Proposition 29 we have that CROSS-ID is secure against impersonation under passive attack. Thus,
thanks to Theorem 30, we have that CROSSis EUF-CMA secure, with a security loss of at most

(
Q
2

)
.

These formulae, alongside the attack we show in the next section, are used to determine CROSS param-
eters.

Remark 31. In the definition of knowledge error, the extractor is required to be expected polynomial
time and not strict polynomial time. Even if expected polynomial time is acceptable in many contexts
[19, 17], it is often preferable to work in strict polynomial time since most of the hard problems are
stated with respect to polynomial-time adversaries.

19

CROSS NIST Submission 2025

It turns out that both the extractors defined in [4, Lemma 3] and [1, Lemma 2], which are the basis of
[5], work in expected polynomial time and are allowed to reach exponential time.

It is possible to show that both the extractors can be modified to be strict polynomial time, at the cost
of a negligible loss in success probability, as shown in [5].

4.5 Forgery Attacks

In this section, we present two forgery attacks, derived from [5]. The former is adapted from [18] for
weighted challenges, while the latter is a new attack. The choice of parameter sets is based on the
complexity of the latter.

We conservatively estimate the cost of these forgeries in terms of CROSS operations. In our analysis,
one elementary operation corresponds to simulating several of the instructions that the prover would
perform. In particular, we conservatively identify the cost of a CROSS operation in 25 instructions (for
details see 4.6). This allows us to easily assess the cost of such attacks so that the recommended CROSS
instances meet the NIST security categories.

The first forgery we describe is relatively intuitive and attempts, for each round, to guess the first
challenge chall1 or the second challenge chall2 (or both). The cost of this attack can be obtained as a
direct corollary of the knowledge soundness of CROSS, but is derived for completeness in the following
proposition.

Proposition 32. Since the protocol underlying CROSS is (t, w)-fixed-weight repetition of a (2, 2)-
special sound interactive proof, a dishonest prover can convince a verifier if, for all executions, they
either guess the first or the second individual challenge (or both) correctly. For the second challenges
chall2[1], . . . , chall2[t], if the adversary selects α ∈ {0, . . . , t} executions for the fixed-weight element,

this attack runs in average time O
(

1
Pα(t,w,p)

)
, where

Pα(t, w, p) =

min{w,α}∑
w′=max{0,w−t+α}

(
α
w′

)(
t−α
w−w′

)(
t
w

) (
1

p− 1

)(α−w′)+(w−w′)

.

The overall cost of the forgery is estimated by optimizing over α ∈ {0, . . . , t}.

Proof. The forgery is successful if all rounds are accepted, that is, if for each round i either chall1[i] or
chall2[i] (or both) have been guessed correctly. The average number of tests is given by the reciprocal
of the probability that, for each round, both challenge values are correctly guessed.

Conservatively, we do not consider the cost of each test. Still, we lower bound the cost of the forgery by
using the average number of tests before the adversary’s guesses are valid for each round.

Let us consider t rounds and a fixed-weight second challenge chall2 =
(
chall2[i], . . . , chall2[t]

)
, with

chall2[i] ∈ {0, 1} being the second challenge for the i-th round. When chall2 has weight w, there will
exist w many rounds with chall2[i] = 1 and t− w many rounds with chall2[i] = 0.

The adversary could now guess the w rounds of chall2[i] = 1. Notice, however, that a better strategy
when w ̸= t/2 is to select α ∈ {0, . . . , t} rounds of chall2[i] = 1.

If the adversary chooses a challenge in one round correctly, this round will be accepted. However, if
the adversary picks a challenge wrong, there is still the possibility of having chosen chall1[i] correctly.
Thus, let us assume that w′ many rounds out of the α guessed chall2[i] = 1-rounds are correct, for
w′ ∈ {max{0, w − t+ α}, . . . ,min{w,α}}.
This implies that there are α−w′ mistakes in the guessed chall2[i] = 0-rounds and w −w′ mistakes in
the guessed chall2[i] = 1-rounds. For each error, the adversary must have guessed the corresponding
chall1[i] correctly.

For a fixed α, this gives an overall cheating probability of

min{w,α}∑
w′=max{0,w−t+α}

(
α
w′

)(
t−α
w−w′

)(
t
w

) (
1

p− 1

)(α−w′)+(w−w′)

.

20

CROSS NIST Submission 2025

We now report a new attack described in [5]. The attack is based on the forgery described in [18] and
later optimized for CROSS for fixed-weight challenges. The attack makes use of the fact that the second
challenge is generated after the first challenge, and, furthermore, it is possible to generate multiple second
challenges without modifying the commitments or the first challenge value.

This way, one can split the forgery into two separate phases, where the overall cost is given by the sum of
the two associated costs. As in the interactive case, the fixed-weight distribution of the second challenge
can be further exploited to optimize the round selection.

The attack is described in [5] in full generality for q2-identification schemes. Below we provide the
detailed application of the algorithm to CROSS with an updated complexity estimate that takes into
account the cost of unitary operations.

For simplicity, we leave several steps of the actual protocol away, e.g., an impersonator would not choose
v[i] ∈ G but rather vG[i] and then compute v[i].

Proposition 33. We consider the following procedure:

1) sample Salt
$←− {0, 1}2λ, Seed $←− {0, 1}λ, generate seeds Seed[1], . . . , Seed[t] using the PRNG tree;

2) guess values chall′1 =
(
chall′1[1], . . . , chall

′
1[t]

)
for the first challenge;

3) guess values chall′2 =
(
chall′2[1], . . . , chall

′
2[t]

)
for the second challenge, choosing α ≥ w rounds

for chall2[i] = 1 (consider that chall′2 has weight w);

4) for each i = 1, . . . , t, do:

4.1) sample u′(i) ∈ Fn
p and e′(i) ∈ G using Seed[i];

4.2) choose an arbitrary v[i] ∈ G;

4.3) compute y∗[i] = u′[i] + chall′1[i]e
′[i];

4.4) compute s′[i] = (v[i] ⋆ y∗[i])H⊤;

4.5) set cmt0[i] = Hash
(
s′[i]− chall′1[i]s,v[i], Salt, i

)
;

4.6) set cmt1[i] = Hash(u′[i], e′[i], Salt, i);

5) compute digestcmt0 as the root of the tree with leaves cmt0[i], . . . , cmt0[t] and digestcmt1 =

Hash
(
cmt1[1] | · · · | cmt1[t]

)
;

compute digestcmt = Hash(digestcmt0 | digestcmt1) and digestMsg = Hash(Msg);

compute digestchall1 = Hash(digestMsg | digstcmt | Salt);

generate
(
chall1[1], . . . , chall1[t]

)
= CSPRNG(digestchall1 | t+ c);

6) let S = {i ∈ {1, . . . , t} |chall′1[i] = chall1[i]}; if |S| ≥ t∗, proceed. Otherwise, restart from step
1);

7) for each round i ∈ S (i.e., such that chall1[i] = chall′1[i]), set y[i] = y∗[i];

8) for each round i ̸∈ S (i.e., such that chall1[i] ̸= chall′1[i]), do:

8.1) if chall′2[i] = 0:

S0.1) choose ẽ[i] ∈ Fn
p such that ẽ[i]H⊤ = s;

S0.2) choose ũ[i] ∈ Fn
p such that ũ[i]H⊤ = (v[i] ⋆ y∗[i])H⊤ − chall1[i]s;

S0.3) set y[i] = ũ[i] + chall1[i]ẽ[i];

8.2) if chall′2[i] = 1:

S1.1) set y[i] = y∗[i];

9) compute digestchall2 = Hash(y[1] | · · · | y[t] | digestchall1) and generate
(
chall2[1], . . . , chall2[t]

)
=

Hash(digestchall2 | t+ c+ 1);

21

CROSS NIST Submission 2025

Table 4: Bit-complexity estimates for signature forgery with parameters as used by CROSS. Values t∗

and α shows the optimal choice of attack parameters.

Algorithm and
Security Category

Optim.
Corner

Parameters Forgery Params. Cost
(bit)p t w t∗ α

CROSS-R-SDP 1
fast 127 157 82 33 83 128.11
balanced 127 256 215 39 231 128.04
small 127 520 488 50 512 128.06

CROSS-R-SDP 3
fast 127 239 125 51 127 192.01
balanced 127 384 321 60 345 192.43
small 127 580 527 68 559 192.11

CROSS-R-SDP 5
fast 127 321 167 69 169 256.02
balanced 127 512 427 80 459 256.35
small 127 832 762 95 807 256.31

CROSS-R-SDP(G) 1
fast 509 147 76 23 76 128.05
balanced 509 256 220 26 231 128.07
small 509 512 484 32 499 128.93

CROSS-R-SDP(G) 3
fast 509 224 119 36 120 192.05
balanced 509 268 196 37 206 192.11
small 509 512 463 44 483 193.28

CROSS-R-SDP(G) 5
fast 509 300 153 48 154 256.06
balanced 509 356 258 50 271 256.34
small 509 642 575 58 600 256.02

10) if
(
chall2[1], . . . , chall2[t]

)
and

(
chall′2[1], . . . , chall

′
2[t]

)
are equal for all indices i ̸∈ S, proceed.

Otherwise, restart from step 8);

11) compute Proof which allows to recover digestcmt0 and Path which allows to recover Seed[i] for all
i with chall2[i] = 1.

12) for each i = 1, . . . , t: if chall2[i] = 0, set resp[i]0 = (y[i],v[i]) and resp[i]1 = cmt1[i].

The above algorithm is a forgery running on average time

O

(
min

t∗∈{0,...,t}

{
1

P1(t, t∗, p)
+

1

P2(t, t∗, w, p)

})
,

where

P1(t, t
∗, p) =

t∑
j=t∗

(
t

j

)(
1

p− 1

)j (
1− 1

p− 1

)t−j

,

P2(t, t
∗, w, p) = max

α∈{w,...,t}

t∑
j=t∗

(
t
j

) (
1

p−1

)j (
1− 1

p−1

)t−j

P1(t, t∗, p)

min{t−j,w}∑
w∗=max{0,α−j}

(
t−j
w∗

)(
j

α−w∗

)(
t
α

) (
j

w−w∗

)(
t
w

) .

Proof. The strategies followed by the forgery are, essentially, a rewriting of the ones in the proof for
Proposition 26, with the additional advantage of having the second challenge with fixed-weight w.

The algorithm iterates over the first loop (steps 1–6) until the choices on the first challenge are valid for
at least t∗ rounds.

Once this is obtained, the algorithm freezes the commitments, and the first challenge then starts making
attempts until the second challenge is correctly generated. This is the purpose of steps 7–10.

For each attempt, the algorithm uses fresh values ẽ[i]: this leads to a different y[i] and, consequently, to
new values for the second challenge

(
chall2[1], . . . , chall2[t]

)
. By doing this, the commitments prepared

in the initial loop remain valid.

22

CROSS NIST Submission 2025

This procedure gets repeated until the second challenge amends the situation; namely, in every round
where the attacker did not guess the correct value for the first challenge, the value for the second challenge
must be correct.

The total cost of the attack is the sum of the costs for the two phases. The probability that the guess(
chall′1[1], . . . , chall

′
1[t]

)
i matches in at least t∗ positions with

(
chall1[1], . . . , chall1[t]

)
, is

P1(t, t
∗, p) =

t∑
j=t∗

(
t

j

)(
1

p− 1

)j (
1− 1

p− 1

)t−j

.

Consequently, the average cost for the first loop is O
(

1
P1(t,t∗,p)

)
.

We now consider the second loop. Let S denote the set of indices i for which chall1[i] = chall′1[i] and
its complement by SC . In the following, we will indicate j = |S|; notice that1

P[|S| = j] =

(
t
j

) (
1

p−1

)j (
1− 1

p−1

)t−j

P1(t, t∗, p)
.

Let chall2 =
(
chall2[1], . . . , chall2[t]

)
and chall′2 =

(
chall′2[1], . . . , chall

′
2[t]

)
, and indicate by

chall2[S] (resp., chall′2[S]) the vector formed by the coordinates of chall2 (resp., chall′2) which
are indexed by S. Analogously, we denote by chall2[S

C] (resp., chall′2[S
C]) the vector formed by the

coordinates of chall2 (resp., chall′2) which are not indexed by S.

For the second loop to halt, chall2 must be such that chall2[S
C] = chall′2[S

C]. Let w∗ denote the
number of 1-guesses for the rounds indexed by SC ; that is, w∗ is the Hamming weight of chall′2[S

C].

Recall that, in guessing chall′2 the adversary chooses α ≥ w position for the 1-entries. It follows that

P
[
wt(chall′2[S

C]) = w∗] = (
t−j
w∗

)(
j

α−w∗

)(
t
α

) .

The probability that a generated chall2 is valid, i.e., chall2[S
C] = chall′2[S

C], is

P
[
chall2 is valid

∣∣wt(chall′2[SC]) = w∗]
=

∣∣{chall2 ∈ {0, 1}t ∣∣wt(chall′2[SC]) = w∗, chall2[S
C] = chall′2[S

C]
}∣∣(

t
w

)
=

∣∣{chall ∈ {0, 1}t ∣∣wt(chall2[S]) = w − w∗, chall2[S
C] = chall′2[S

C]
}∣∣(

t
w

)
=

(
j

w−w∗

)(
t
w

) .

An example of a valid chall2 is reported below, for example, with t∗ = 5, α = t− 1 and w∗ = t− t∗− 1.

First t∗ rounds Last t− t∗ rounds
Guessed chall′1[i] 2 71 16 23 4 5 98 121 46 29 82 · · · 45
Guessed chall′2[i] 1 1 1 1 1 1 0 1 1 1 1 · · · 1
Actual chall1[i] 2 71 16 23 4 7 120 99 21 7 124 · · · 3
Actual chall2[i] 1 1 0 1 1 1 0 1 1 1 1 · · · 1

Weight w − w∗ Weight w∗

1Formally this is the conditional probability, given that |S| ≥ t∗; to avoid burdening the (already involved) notation,
we do not indicate it explicitly.

23

CROSS NIST Submission 2025

Putting everything together, we have that a test for chall2 is valid with an average probability

P2(t, t
∗, w, p) = max

α∈{w,...,t}

t∑
j=t∗

P[|S| = j]

·
min{t−j,α}∑

w∗=max{0,α−j}

P[wt(chall′2[SC]) = w∗] · P
[
chall2 is valid

∣∣wt(chall′2[SC] = w∗)
]

= max
α∈{w,...,t}

t∑
j=t∗

(
t
j

) (
1

p−1

)j (
1− 1

p−1

)t−j

P1(t, t∗, p)

min{t−j,w}∑
w∗=max{0,α−j}

(
t−j
w∗

)(
j

α−w∗

)(
t
α

) (
j

w−w∗

)(
t
w

) .

The overall cost of the attack is estimated by summing the costs for both phases and optimizing over t∗,
that is

min
t∗∈{0,...,t}

{
1

P1(t, t∗, p)
+

1

P2(t, t∗, w, p)

}
.

Expected security strength: Table 4 presents the computational cost of the forgery attack for pa-
rameter sets as used by CROSS.

We now show that we can target a smaller forgery cost (by 5 bits), as each forgery attempt makes several
calls to SHAKE.

4.6 Finite Regime Cost of a Forgery

Considering the aforementioned cost of forging a signature, we have that the big-O notation hides the
constant cost of actually performing the computations required to perform a forgery attempt.

A straightforward, but effective, lower bound to the said constant cost is represented by a single call to
the Hash· function, which we denote as cHash.

The security requirements for NIST category 1, 3 and 5 are stated with respect to the hardness of
breaking AES with a 128, 192, and 256 bit long key, respectively. This corresponds to 2ℓcAES−ℓ, where
ℓ is the length in bits of the AES key, and cAES−ℓ is the cost of a single computation of AES with an ℓ
bit key, expressed as the count of Boolean gates.

As a consequence, we have that the maximum tolerable forgery probability x can be conservatively
estimated by solving the equation 2ℓcAES−ℓ =

1
xcHash for x. This in turn yields x = 2−ℓ cHash

cAES−ℓ
.

Therefore, if the cost of a hash call, quantified in Boolean gates, is higher than the one of an AES
execution with the appropriate key length, the tolerable forgery probability will be higher than 2−ℓ by
a factor cHash

cAES−ℓ
.

In our case, Hash· is implemented with the NIST standard SHAKE [23] algorithms, which has its com-
plexity dominated by the computation of the inner Keccak-f function, repeated 24 times for each ingested
block of input. Providing a quantitative lower bound for the Boolean gate cost of SHAKE, can be done
assuming the shortest possible input, and counting the number of Boolean gates to realize f .

We note that minimizing the Boolean complexity of f is very simple (due to its small nature), and a gate
count yields ≈ 736kgates. We note that this gate count does not consider the cost of writing the SHAKE
state in the chosen memory technology, nor the delays of the wiring, providing a definitely conservative
estimate of the SHAKE cost.

Considering the estimated AES cost in Boolean gates reported in the NIST call [24], can be derived to be
215 for AES-128 (as the document reports 2ℓcAES−ℓ = 2143) we have that cHash

cAES−ℓ
≈ 22.4, in turn allowing

us to raise the maximum forgery probability to 2−ℓ+log2(22.4) ≈ 2−ℓ+4.489.

We round the figure to 2−ℓ+5, as the remaining cost of the computations required to perform a forgery
attempt are at least as demanding as a SHAKE computation.

24

CROSS NIST Submission 2025

5 Bibliography

[1] Thomas Attema and Serge Fehr. Parallel repetition of (k1, . . . , kµ)-special-sound multi-round in-
teractive proofs. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology –
CRYPTO 2022, pages 415–443, Cham, 2022. Springer Nature Switzerland.

[2] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and Paolo Santini. A finite
regime analysis of information set decoding algorithms. Algorithms, 12(10):209, 2019.

[3] Marco Baldi, Sebastian Bitzer, Alessio Pavoni, Paolo Santini, Antonia Wachter-Zeh, and Violetta
Weger. Zero knowledge protocols and signatures from the restricted syndrome decoding problem.
PKC 2024, 2024.

[4] Michele Battagliola, Riccardo Longo, Federico Pintore, Edoardo Signorini, and Giovanni Tognolini.
Security of fixed-weight repetitions of special-sound multi-round proofs. Cryptology ePrint Archive,
Paper 2024/884, 2024.

[5] Michele Battagliola, Riccardo Longo, Federico Pintore, Edoardo Signorini, and Giovanni Tognolini.
A revision of CROSS security: Proofs and attacks for multi-round fiat-shamir signatures. Cryptology
ePrint Archive, Paper 2025/127, 2025.

[6] Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic algorithms for hard knap-
sacks. In Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 364–385. Springer, 2011.

[7] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random binary
linear codes in 2n/20: How 1+ 1= 0 improves information set decoding. In Advances in Cryptology–
EUROCRYPT 2012: 31st Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings 31, pages 520–536. Springer,
2012.

[8] Daniel J Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding exponents: ball-collision
decoding. In Advances in Cryptology–CRYPTO 2011: 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings 31, pages 743–760. Springer, 2011.

[9] Ward Beullens, Pierre Briaud, and Morten Øygarden. A security analysis of restricted syndrome
decoding problems. Cryptology ePrint Archive, Paper 2024/611, 2024.

[10] Sebastian Bitzer, Alessio Pavoni, Violetta Weger, Paolo Santini, Marco Baldi, and Antonia Wachter-
Zeh. Generic decoding of restricted errors. In 2023 IEEE International Symposium on Information
Theory (ISIT), pages 246–251. IEEE, 2023.

[11] Il’ya Isaakovich Dumer. Two decoding algorithms for linear codes. Problemy Peredachi Informatsii,
25(1):24–32, 1989.

[12] Andre Esser, Alexander May, and Floyd Zweydinger. McEliece needs a break–solving McEliece-1284
and quasi-cyclic-2918 with modern isd. In Advances in Cryptology–EUROCRYPT 2022: 41st Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Trondheim,
Norway, May 30–June 3, 2022, Proceedings, Part III, pages 433–457. Springer, 2022.

[13] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-based cryptosystems.
In Advances in Cryptology–ASIACRYPT 2009: 15th International Conference on the Theory and
Application of Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009. Proceed-
ings 15, pages 88–105. Springer, 2009.

[14] Cheikh Thiécoumba Gueye, Jean Belo Klamti, and Shoichi Hirose. Generalization of BJMM-ISD
using May-Ozerov nearest neighbor algorithm over an arbitrary finite field Fq. In International
Conference on Codes, Cryptology, and Information Security, pages 96–109. Springer, 2017.

[15] Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack problem.
Journal of the ACM (JACM), 21(2):277–292, 1974.

25

CROSS NIST Submission 2025

[16] Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In Advances
in Cryptology – EUROCRYPT 2010, pages 235–256. Springer, 2010.

[17] Joseph Jaeger and Stefano Tessaro. Expected-time cryptography: Generic techniques and applica-
tions to concrete soundness. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography,
pages 414–443, Cham, 2020. Springer International Publishing.

[18] Daniel Kales and Greg Zaverucha. An attack on some signature schemes constructed from five-pass
identification schemes. In Cryptology and Network Security: 19th International Conference, CANS
2020, Vienna, Austria, December 14–16, 2020, Proceedings, pages 3–22. Springer, 2020.

[19] Jonathan Katz and Yehuda Lindell. Handling expected polynomial-time strategies in simulation-
based security proofs. SSRN Electronic Journal, 01 2006.

[20] Shai Levin. A note on zero-knowledge simulator of the CROSS identification protocol. Cryptology
ePrint Archive, Paper 2025/359, 2025.

[21] Felice Manganiello and Freeman Slaughter. Generic error SDP and generic error CVE. In Andre
Esser and Paolo Santini, editors, Code-Based Cryptography, pages 125–143, Cham, 2023. Springer
Nature Switzerland.

[22] Alexander Meurer. A coding-theoretic approach to cryptanalysis. PhD thesis, Ruhr-Universität
Bochum, 2013.

[23] National Institute of Standards and Technology. FIPS 202 - SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions. https://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.202.pdf, 2015.

[24] National Institute of Standards and Technology. Post-quantum crypto project, December 2016.

[25] Paolo Santini, Marco Baldi, and Franco Chiaraluce. Computational hardness of the permuted kernel
and subcode equivalence problems. IEEE Transactions on Information Theory, 2023.

[26] Jacques Stern. A method for finding codewords of small weight. In International Colloquium on
Coding Theory and Applications, pages 106–113. Springer, 1988.

[27] David Wagner. A generalized birthday problem. In Annual International Cryptology Conference,
pages 288–304. Springer, 2002.

[28] Violetta Weger, Karan Khathuria, Anna-Lena Horlemann, Massimo Battaglioni, Paolo Santini,
and Edoardo Persichetti. On the hardness of the Lee syndrome decoding problem. Advances in
Mathematics of Communications, 2022.

A Proof of NP-Completeness

This section provides a proof of Theorem 2, i.e., it is shown that R-SDP is NP-complete. Note that this
result can also be inferred from [28], where the authors show that the additivity of the weight and having
a unit in the ambient space of the error vector is enough to obtain NP-completeness. For the sake of
completeness, we state the proof in the following.

Proof. Recall the NP-hard 3-Dimensional Matching (3DM) problem, where one is given the instance
T = {b1, . . . , bt}, with |T | = t, U ⊂ T × T × T and |U | = u and asks whether there exists a W ⊂ U with
|W | = t and no two words in W coincide in any position.

Recall that the original SDP has a reduction from 3DM through the following construction: let H ∈
F(3t)×u
p be the incidence matrix, i.e., each column of H corresponds to a word in U and the rows

correspond to T × T × T ; thus, the rows {1, . . . , t} correspond to the first position of the word u, the
rows {t + 1, . . . , 2t} correspond to the second position of u and the rows {2t + 1, . . . , 3t} correspond to
the third position of u. More formally, let T = {b1, . . . , bt}, U = {a1, . . . ,au} and

• for i ∈ {1, . . . , t}, we set hi,j = 1 if aj [1] = bi and hi,j = 0 else,

26

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

CROSS NIST Submission 2025

• for i ∈ {t+ 1, . . . , 2t}, we set hi,j = 1 if aj [2] = bi and hi,j = 0 else,

• for i ∈ {2t+ 1, . . . , 3t}, we set hi,j = 1 if aj [3] = bi and hi,j = 0 else.

We also set s ∈ F3t
p to be the all-one vector.

From the original reduction, we know that any solution e ∈ Fu
p with He⊤ = s⊤ has weight t (it has

weight at least t as we need to reach the all-one vector in F3t
p and each column gives weight 3, and it

has weight at most t as p is larger than u and else we would get syndrome entries larger than 1) and its
support corresponds to the solution W . That is, the columns of H indexed by the support of e are the
t words in W .

The polynomial reduction from 3DM to R-SDP uses this construction as well. Let T of size t and

U ⊂ T × T × T of size u be an instance of 3DM. Let H ∈ F(3t)×u
p be the incidence matrix and let

H̃ =

(
H −g ⋆H
Idu Idu

)
∈ F(3t+u)×2u

p

be a parity-check matrix. Let us consider the syndrome (s, s′) ∈ F3t+u
p with s = (1−g2, . . . , 1−g2) ∈ F3t

p

and s′ = (1 + g, . . . , 1 + g) ∈ Fu
p . Thus, the instance of R-SDP given by H̃ and (s, s′) is asking for

(e, e′) ∈ E2u such that

(e, e′)H̃⊤ = (s, s′),

where E = {gi | i ∈ {0, . . . , z − 1}}. By assumption of R-SDP, we use a g of order 2 < z < p− 1.

We consider two cases.

1. Assume that the R-SDP solver returns “yes”, i.e., there exists e, e′ ∈ Eu such that (e, e′)H̃⊤ =
(s, s′). Hence,

He⊤ − g ⋆He′⊤ = (1− g2, . . . , 1− g2)⊤,

e+ e′ = (1 + g, . . . , 1 + g).

Hence, for each i ∈ {1, . . . , u} we have ei + e′i = 1 + g.

Let us assume (we later show that this hypothesis is not needed, but it facilitates the proof) that
the only elements in E that add to 1 + g are 1 and g.

Hence, whenever ei = 1, we must have e′i = g and whenever ei = g, we must have e′i = 1. Thus,
we split e = e1 + eg and e′ = e′1 + e′g where e1, e

′
1 ∈ {0, 1}u, eg, e′g ∈ {0, g}u and supp(e1) = S =

supp(e′g) and supp(e′1) = SC = supp(eg). This implies that eg = g ⋆ e′1 and e′g = g ⋆ e1.

The first parity-check equation can now be reformulated as

He⊤ − g ⋆He′⊤

=He⊤1 − g ⋆He′⊤g +He⊤g − g ⋆He′⊤1

=He⊤1 − g2 ⋆He⊤1 + g ⋆He′⊤1 − g ⋆He′⊤1

=(1− g2) ⋆He⊤1

=(1− g2, . . . , 1− g2) = s′ ;

thus, He⊤1 = (1, . . . , 1) is such that supp(e1) corresponds to a solutionW of 3DM, as in the classical
reduction.

2. Assume that the R-SDP solver returns “no”, i.e., there exists no e, e′ ∈ Eu such that (e, e′)H̃⊤ =
(s, s′).

Let us assume by contradiction, that the 3DM has a solution W. We can then define S to be the
indices of words in U belonging to the solution W . Let us define e1, e

′
1 ∈ {0, 1}u, eg, e′g ∈ {0, g}u

with supp(e1) = S = supp(e′g) and supp(e′1) = SC = supp(eg).

From this, it also follows that eg = g ⋆e′1 and e′g = g ⋆e1. Then, the vector (e1+eg, e
′
1+e′g) ∈ E2u

is a solution to the R-SDP, as in case 1, which gives the desired contradiction, to the R-SDP solver
returning “no”.

27

CROSS NIST Submission 2025

Note that the hypothesis that only 1 and g in E add up to 1 + g is not necessary.

For this assume that there exists gi, gj ∈ E, with 0 ̸= i < j < z such that gi + gj = 1 + g. Then, the
splitting of e and e′ is a bit more complicated:

e = e1 + eg + ei + ej ,

e′ = e′1 + e′g + e′i + e′j ,

where e1, e
′
1 ∈ {0, 1}u,eg, e′g ∈ {0, g}u,ei, e′i ∈ {0, gi}u,ej , e′j ∈ {0, gj}u with

supp(e1) = S1 = supp(e′g),

supp(eg) = S′
1 = supp(e′1),

supp(ei) = Si = supp(e′j),

supp(ej) = S′
i = supp(e′i),

and the supports S1, S
′
1, Si, S

′
i are distinct and partition {1, . . . , u}. Again, it follows that

eg = g ⋆ e′1,

e′g = g ⋆ e1,

ej = gj−i ⋆ e′i,

e′j = gj−i ⋆ ei.

Thus, by rewriting the first parity-check equation, we get

He⊤ − g ⋆He′⊤

=He⊤1 +He⊤g +He⊤i +He⊤j

− g ⋆He′⊤1 − g ⋆He′⊤g − g ⋆He′⊤i − g ⋆He′⊤j

=He⊤1 + g ⋆He′⊤1 +He⊤i + gj−i ⋆He′⊤i

− g ⋆He′⊤1 − g2 ⋆He⊤1 − g ⋆He′⊤i − gj−i+1 ⋆He⊤i

=(1− g2) ⋆He⊤1 + (1− gj−i+1) ⋆He⊤i + (gj−i − g) ⋆He′⊤i

=(1− g2, . . . , 1− g2) = s′.

Since e1, ei, e
′
i all have different supports, the only way to get 1− g2 in each entry is to have ei = e′i = 0.

In fact, any other sum leads to a contradiction:

• If (1− g2) + (1− gj−i+1) = 1− g2 then 1 = gj−i+1 and hence j = i− 1 which contradicts j > i.

• If (1 − g2) + (gj−i − g) = 1 − g2 then gj−i = g and hence j − i = 1. However, as then gj + gi =
gi(1 + g) = 1 + g, it follows that gi = 1, which contradicts i ̸= 0.

• If (1− g2) + (1− gj−i+) + (gj−i − g) = 1− g2, then 1 + gj−i = gj−i+1 + g = g(1 + gj−i) and thus
g = 1, which contradicts E ̸= F⋆

q .

• If (1− gj−i+1) + (gj−i− g) = 1− g2, then gj−i− gj−i+1 = g− g2 and hence gj−i(1− g) = g(1− g)
and thus j − i = 1, which is again a contradiction, as in the second case.

28

	Introduction
	Notation
	Hardness Assumption: Restricted Decoding
	Solvers for R-SDP
	Collision Search-based Solver
	Representation Technique-based Solver

	Solvers for R-SDP(G)

	Proof of Security
	Basics on ZK protocols
	Security of the Protocol
	Signature Scheme Security in General
	Security of the Signature Scheme
	Forgery Attacks
	Finite Regime Cost of a Forgery

	Bibliography
	Proof of NP-Completeness

