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Change Log

This section summarizes the changes corresponding to different CROSS specification documents.

Version 1.1 With regards to Version 1.0, the following changes have been made to this second version.

1. Improved security analysis for R-SDP(G): In Section 7.1.2, we consider an improved solver for the
R-SDP(G), and we updated the parameters for CROSS R-SDP(G) accordingly. The parameters
for the CROSS R-SDP instances are unchanged.

2. To prevent collision attacks on CSPRNG seeds, we include salting and a unique index per CSPRNG
instance in each round of the signature. We detail these tweaks in the procedural description of
CROSS, in Section 5.

3. To add hedging against multikey attacks we raise the length of the seeds for keypair generation to
2λ: this allows to prevent collision attacks relying on the collection of 2

λ
2 keypairs. We updated

Algorithm 1, Algorithm 2 and Algorithm 3 accordingly.

4. We propose parameters for an additional optimization corner that aims for even lower latency than
the previous fast optimization corner (at the cost of larger signatures). While previous parameter
sets featured a small and fast optimization targets, the new security categories provide a small,
balanced (formerly fast), and fast version.

5. We report updated versions of Algorithm 1, Algorithm 2 and Algorithm 3, where we revised the
generation of the V,W, values. Doing so saves a CSPRNG call during key generation, 2t CSPRNG
during signature and 2w CSPRNG calls during verification, at no security margin loss.

6. We revised the CSPRNG implementation strategy, extracting always a constant amount of pseudo-
random bits from each CSPRNG call. We make this possible, in the rejection sampling scenarios,
considering the amount of required bits so that the CSPRNG extraction fails with probability 1

2λ
.

We detail this CSPRNG strategy in Section 9. This approach makes constant time implementations
easier.

7. We now consider the objects in their bit-packed representation when they are employed as the
inputs of cryptographic hashed, reducing the amount of required computation. This is reported in
Section 9.

8. We switched from SHA-3 as a cryptographic hash to SHAKE with a 2λ bit extracted string. This
improves on the overall speed, while keeping the same security margin (as the bottleneck for attacks
was SHA-3 collision resistance, which matches the one of the appropriate SHAKE with a 2λ bit
output). We provide details in Section 9.

9. We report the performance figures from an optimized implementation for the Intel AVX2 instruction
set in Section 10.

10. We report the memory footprints of a stack-size optimized portable implementation, fitting all our
parameter sets on a Cortex-M4-based microcontroller, namely the STM32F407VG present on the
STM32F4 Discovery board by STMicroelectronics employed by the pqm4 benchmarking project in
Section 10.
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1 Introduction

CROSS is a signature scheme obtained by applying the Fiat-Shamir transform to an interactive Zero-
Knowledge (ZK) Identification protocol. CROSS is based on the so-called Restricted Syndrome Decoding
Problem (R-SDP), an NP-complete problem that can be seen as a variant of the classical Syndrome
Decoding Problem (SDP). Let Fp be the finite field with p elements (with p being a prime), and let
g ∈ F∗

p: in R-SDP, the solution to the decoding problem is required to take values in the cyclic subgroup
E = ⟨g⟩ ⊆ F∗

p. Contrary to the SDP, we can even guarantee the uniqueness of the solution while having
maximum Hamming weight: this corresponds to demanding that the solution to R-SDP is in En (here,
n denotes the code length). We also consider a specialized version of R-SDP, called R-SDP(G), in which
solutions are required to live in a subgroup G ⊂ En, with |G| < |En| = zn. This allows us to work with
more compact objects, taking 0 < m < n with |G| = zm.

The hardness of solving R-SDP relates directly to that of SDP since the most efficient solvers are
the same, namely, Information Set Decoding (ISD) algorithms. The same considerations apply to R-
SDP(G), with the addition that the structure of G may be somehow exploited to speed up decoding
attacks. Naturally, we considered this possibility and chose the subgroup G to rule out structural
weaknesses. CROSS signatures are grouped into two main families, depending on the employed version
of R-SDP. Instances based on R-SDP have slightly larger signatures but are more conservative (since the
problem is analogous to SDP). Conversely, R-SDP(G) is a somewhat less standard problem but offers
more compact signatures.

The main features of CROSS are listed below.

Based on restricted errors. CROSS is based on decoding a restricted error vector. Both the R-
SDP and the R-SDP(G) are proven to be NP-hard. Using restricted errors has several benefits: generic
decoders have a larger computational cost than the associated problem in the Hamming metric, and
restricted errors can be more compactly represented using only n log2(z) bits, respectively m log2(z) bits
for R-SDP(G). Restricted errors also allow us to avoid the need to compute permutations, a task which is
challenging when constant-time implementation constraints are taken into account. Since this is quite a
novel approach, we carefully study its security. In particular, we provide an analysis specifically tailored
to the recommended choices for p and z.

Based on well-known and secure constructions. Using ZK protocols and the Fiat-Shamir transform
to create a signature scheme comes with a long history and strong security aspects. In particular, the
Existential Unforgeability under Chosen Message Attacks (EUF-CMA) security proof can be directly
obtained from the soundness of the ZK protocol.

Based on an implementation friendly problem. The reduced size of the objects (parity-check matri-
ces, error vectors, and syndromes) obtained when constructing CROSS from R-SDP/R-SDP(G) reduces
the amount of computational effort compared to the traditional SDP in the Hamming metric, where the
objects are larger. Furthermore, about half of the arithmetic operations in CROSS are performed over a
smaller field Fz, with z a prime number, where we can substitute modular multiplications with less ex-
pensive additions. Finally, the R-SDP/R-SDP(G) structure allows us to choose implementation-friendly
values for p and z. Namely, we pick them both as Mersenne primes for R-SDP and as a small prime plus
a Mersenne prime for R-SDP(G). We recall that modular arithmetic modulo a Mersenne prime does not
require a divisor functional unit to be computed. Finally, the R-SDP/R-SDP(G) structure allows us to
tune the security level smoothly by adjusting the chosen code length while keeping p and z fixed. This,
in turn, allows for the implementation of only two sets of arithmetic primitives, which reduces the code
size (in software implementations, where it is critical in Flash-memory-constrained microcontrollers) or
the required silicon area (in hardware implementations).

Compact signatures. When using R-SDP instead of the classical SDP, the cost of ISD algorithms, the
state-of-the-art solvers for decoding problems, increases. This allows us to select smaller parameters to
attain the desired security levels, positively impacting both signature sizes and computational complexity.
In addition, the linear transformations on the considered error vectors are much smaller than the linear
isometries in the Hamming metric. Consider that isometries have been instrumental in designing several
ZK protocols based on SDP; when utilized in R-SDP, it is enough to use a vector in Fn

z to represent
restricted vectors and transformations on them. This greatly reduces the binary size of isometries
compared to other settings, such as the Hamming metric. Consequently, this efficient representation
significantly reduces the communication cost of the ZK protocol we use in CROSS.
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Simplicity. CROSS has been designed to strive for simplicity and algorithmic efficiency. Indeed, key
generation, signature, and verification primitives in CROSS require only consolidated symmetric primi-
tives (such as CSPRNGs and cryptographic hashes) and vector/matrix operations among small elements.
This structural simplicity allows us to reduce the amount of implementation footguns [1], i.e., potential
points for implementation errors that lead to vulnerabilities, either directly or through the exploitation
of side channel information leakage. The structural simplicity also allows for a straightforward, constant-
time implementation of the scheme. Indeed, all the linear algebra operations are natively performed in
a memory-access-pattern oblivious way, while CSPRNGs and hashes are available as consolidated and
tested constant-time implementations.

Achieving different trade-offs. For R-SDP and R-SDP(G), we propose different instances of CROSS
to achieve heterogeneous trade-offs. Indeed, the signature size can be traded with the computational
complexity: executing more rounds of the ZK protocol increases latency but makes signatures more
compact. For each security category and each version of the problem (i.e., either R-SDP or R-SDP(G)),
we consider three variants of CROSS.

- CROSS-fast: small values of t (the number of repetitions for the ZK protocol). This variant aims
at fast signature generation and verification.

- CROSS-small: large values of t. This variant aims at achieving short signatures.

- CROSS-balanced: moderate values of t. This variant comes as a trade-off between the other two
variants. Signatures are larger than those of the short variant but shorter than those of the fast
variant. Analogously, timings are worse than those of the fast variant but are better than those of
the short variant.

Small Public Key Sizes. We can compress both the private and the public keys of CROSS. In
particular, the private key is reduced to its optimal size: a single random seed. All the elements in
the public key, apart from a short vector over Fp, can also be regenerated from a seed with acceptable
computational overhead. This allows us to compress the public key size - in practice, less than 121 B for
R-SDP and less than 74 B for R-SDP(G) - for all NIST security categories. These reduced key sizes allow
CROSS keypairs to fit even on constrained embedded devices where persistent (flash) memory, such as
low-end microcontrollers, may be scarce.

1.1 Historical Background

The first code-based Zero-Knowledge (ZK) identification protocol was proposed by Stern in 1993 [49].
The scheme is based on a couple of fundamental ideas that are simple but rather powerful: a secret,
a low-weight vector can be masked using isometries and sums with random vectors. These very same
ideas have been used in subsequent schemes such as [51, 2] and [26]. The latter, which we will refer to
as CVE, is the first ZK protocol based on SDP for codes over non-binary finite fields.

As it is well known, interactive ZK protocols can be turned into signature schemes using the cel-
ebrated Fiat-Shamir transform [34]. As a very positive aspect, the resulting schemes generically have
quite compact public keys and benefit from high-security guarantees since the proof of knowledge is
constructed from a truly random instance of some hard problem (i.e., neither a trapdoor nor an ad-hoc
code construction is required). The other required security assumptions come from fundamental crypto-
graphic tools, e.g., the hardness of finding collisions for a hash function. In this sense, signature schemes
obtained from the Fiat-Shamir paradigm achieve security in an exceptionally pure way.

However, for all the aforementioned protocols, the resulting signatures are relatively large, owing to
the need for several parallel executions to reduce the overall soundness error1. For this reason, signatures
obtained from the Fiat-Shamir paradigm have been deemed impractical for several years. Now, the
scenario has drastically changed. Indeed, in recent years quite some effort has been dedicated to the
development of new ZK protocols, with signatures becoming shorter and shorter [17, 21, 37, 32, 33, 3,
20, 30, 19, 41]. Techniques to reduce signature sizes consist, for instance, of using a binary tree structure
to generate randomness, Merkle trees to reduce commitment sizes, and an unbalanced distribution for
the verifier’s messages (the challenges that admit a more compact response are asked more frequently).

1If the soundness error is not negligible in the security parameter, the cost of forgery attacks may be below the claimed
security level.

4



CROSS NIST Submission 2023

Other popular approaches are the so-called protocol-with-helper [18] and the Multi-Party Computation
(MPC) in-the-head (MPCitH) paradigm, proposed in [42] and first adapted to the code-based setting in
[33]. Notice that several modern schemes can be thought of as clever and highly optimized re-writings
of historical proposals such as [49] and [26], since they are still based on the very same fundamental
ideas (e.g., masking through isometries). The reductions in the signature size are sometimes motivated
by reductions in the soundness error; however, this comes at the cost of a non-trivial computational
overhead for both the prover and the verifier (this is the case for protocols-with-helper or using the
MPCitH approach).

In [8], the authors study ZK identification protocols based on the R-SDP setting (they also introduce
the R-SDP(G) variant). The paper shows that R-SDP appears to be better fitted for ZK protocols
than the classical SDP. Indeed, messages become significantly shorter since codes become smaller, and
isometries can be represented more compactly. In [8], two main protocols are investigated: GPS [37]
and BG [19], originally proposed for the Permuted Kernel Problem (PKP). The authors show that these
schemes would enjoy significantly shorter signatures when adapted to use R-SDP and identify BG as a
strong candidate, with signatures in the order of 7 kB for 128 bits of security. Benchmarks for a proof-
of-concept implementation are also provided: timings are very promising and confirm that the R-SDP
setting can lead to efficient and practical schemes.

Notice that both the GPS and BG protocols use the same ideas of the CVE scheme [26]. GPS is a
protocol-with-helper and, like all such schemes, can achieve competitive signatures only if quite a few
rounds are performed - this leads to slower signature generation and verification procedures. The BG
protocol amplifies the soundness of each round by repeating, dozens of times, the operations that would
have been performed in a single round of CVE. Even though these operations are inherently fast (calling
hashes and PRNG, applying isometries, and summing vectors), this intense repetition would prevent the
subsequent signature scheme from being fast.

CROSS is designed for simplicity and very high algorithmic efficiency. For this reason, we chose to
pursue an alternative approach to the schemes presented in [8]. Indeed, the underlying ZK protocol
employed in CROSS corresponds to the basic CVE protocol plus standard optimizations (PRNG calls,
Merkle trees, and unbalanced challenges). Even though the original CVE protocol has a rather large
soundness error (approximately 1/2), this is not an issue for R-SDP, as messages become very short. To
achieve a negligible soundness error, CROSS requires a moderate number of rounds; however, each round
corresponds to a single round of the CVE protocol and, as such, is intrinsically simple and computation-
ally light. In the end, if compared with the protocols in [8], CROSS performs fewer operations: we pay
a small price in signature size but gain an immense boost for what concerns computational complexity.

1.2 Overview of Basic Idea

The underlying problem. CROSS is built on a Zero-Knowledge (ZK) protocol for the Restricted Syn-
drome Decoding Problem (R-SDP). R-SDP has been first introduced in [7] and subsequently generalized
in [8]. The R-SDP depends on a restricted set E which is given by an element g ∈ Fp of multiplicative

order z, namely we define E = {gi | i ∈ {1, . . . , z}}. Given a parity-check matrix H ∈ F(n−k)×n
p , a

syndrome s ∈ Fn−k
p and a restricted set E, R-SDP asks to find a vector e ∈ En such that s = eH⊤. In

the following sections, we will study the R-SDP in detail.
The crucial difference to the classical SDP is that we consider error vectors of full weight. The

hardness of decoding now stems from the restriction that the entries of the error vector can only live in
E, a subgroup of the multiplicative group of the finite field. In the R-SDP, this restriction of the ambient
space replaces the traditional weight constraint of the standard SDP while still enjoying an NP-hardness
proof. Having error vectors of full weight allows us to avoid the need to send permutations within
the ZK protocol. This yields another significant reduction in the communication cost and simplifies
implementations (as constant-time implementation of permutations is non-trivial).

The Zero-Knowledge protocol. The ZK identification protocol CROSS-ID is an adaption of the

classical CVE protocol [26]. The signer chooses a random parity-check matrix H ∈ F(n−k)×n
p (the matrix

is generated from a seed) and an element g ∈ F∗
p of prime order z. This is the generator of the subgroup

E = {gi | i ∈ {1, . . . , z}}. The signer samples at random a vector ℓ in Fn
z (we always choose z so

that it is prime), then computes e = gℓ = (gℓ1 , . . . , gℓn) ∈ En and its syndrome s = eH⊤ ∈ Fn−k
p .

The signer publishes both the seed for H and s, while the values of p, g, and z are fixed. Within one
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round of the CROSS-ID protocol, the signer will either prove that the secret error vector e satisfies the
syndrome equations s = eH⊤ or is such that e ∈ En. This is done with a 5-pass protocol, which can be
classified as a q2-Identification scheme, i.e., the first challenge can take q different values (in our case,
q = p−1), while the second challenge can take two different values (either 0 or 1). As in the original CVE
scheme, this protocol achieves (2, 2)-out-of-(q, 2) special soundness (in the following, we will sometimes
say (2, 2)-special soundness for simplicity) and consequently has soundness error q+1

2q = p
2(p−1) ≈

1
2 .

The signature scheme. Using the Fiat-Shamir transform, we can render the CROSS-ID protocol into
a signature scheme; due to the protocol being a q2-Identification scheme, we immediately obtain the
EUF-CMA security proof. We will reduce the resulting signature sizes further by employing well-known
techniques: we send the hash of the commitments for all t rounds beforehand and use a Merkle tree to
recover the commitments for the challenges b = 0. This reduces the signature size further as we need
fewer hashes than using the Merkle tree for both challenges.

Since sending the response to the challenge b = 1 is only a seed and much smaller than the response
to b = 0, we use a weighted challenge vector b = (b(1), . . . , b(t)) ∈ {0, 1}t to optimize the signature size.
Note that this unbalanced distribution in the second challenge value affects the cost of forgeries: we
consider attacks such as [43], which we adapt and optimize to our considered setting.

2 Notation

This section establishes the notation and conventions we will adopt throughout this document.

2.1 Mathematical Notation

We use [a; b] to denote the set of all reals x ∈ R such that a ≤ x ≤ b. For a finite set A ⊂ {1, . . . , n}, the

expression a
$←− A means that a is chosen uniformly at random from A. In addition, we denote by |A|

the cardinality of A, by AC = {1, . . . , n} \ A its complement, and by A0 = A ∪ {0} the set union with
the 0 element. For m a positive integer we denote by Zm = Z/mZ the ring of integers modulo m. Let p
be a prime: we denote by Fp the finite field of order p and by F∗

p its multiplicative group. We denote by
ord(g) the multiplicative order of a g ∈ F∗

p.
We use uppercase (resp. lowercase) letters to indicate matrices (resp. vectors). If J is a set, we use

AJ to denote the matrix formed by the columns of A indexed by J ; a similar notation will be used for
vectors. The identity matrix of size m is denoted as Im. We use 0 to denote both the null matrix and
the null vector without specifying dimensions (which will always be apparent from the context). Finally,
we denote by hp the p-ary entropy function.

2.2 Cryptographic Notation

This document uses conventional cryptographic notations, e.g., λ denotes a security parameter. We will
consider λ ∈ {128, 192, 256}, as this greatly helps in establishing how symmetric primitives are employed.
We list, in the following, the cryptographic functions which are used in this document:

- a cryptographically secure hash function is indicated as Hash : {0, 1}∗ → {0, 1}2λ, with input of
any size and digest with binary length 2λ;

- a Merkle tree constructed from t leaves (a(t), . . . , a(t)) is indicated as T = MerkleTree(a(1), · · · , a(t)).
The root of the tree is extracted as T .Root( ), while the function that computes the Merkle proof
for the leaves in the positions indexed by a set J is T .MerkleProof(J). Recomputation of the root,
starting from some leaves {a(i)}i∈J and the associated Merkle proofs MerkleProof, is indicated as

VerifyMerkleRoot
(
{c(i)1 }i ̸∈J , MerkleProof

)
. The hash function employed to construct the tree has

digests of length 2λ, that is, any leaf in the tree is a binary string with length 2λ;

- for a PRNG tree constructed from a root Root, we indicate the function that computes the t leaves(
Seed(1), . . . , Seed(t)

)
as SeedTree(Root). All generated seeds have binary length λ. To extract the

path SeedPath, which can be used to generate the seeds indexed by a set J , we use the function
SeedPath(Root, J). To regenerate such seeds, we use the function GetSeeds(SeedPath, J). We will
use salted trees, i.e., will generate the PRNG tree using as a root a length-λ master seed MSeed,
concatenated with a length-2λ string Salt. This will be made explicit by using MSeed, Salt.

6
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The notation a
Seed←−−− A means that a is sampled through a deterministic cryptographically secure random

generator, outputting elements as a uniform pick from A, and being initialized with Seed as the seed
value.

3 Preliminaries

3.1 Signatures from Zero-Knowledge Protocols

To be concise, we do not give general definitions and properties that can be easily found in the literature
(see, e.g., [31, 33]), but only recall what is strictly necessary for CROSS.

Zero-Knowledge Identification Schemes A ZK protocol, also called ZK Identification scheme or
ZK Proof of Knowledge, is an interactive protocol in which a prover P aims to convince a verifier V
that they know a secret that verifies some public statement, without revealing said secret. The two
parties interact by exchanging messages. We consider only protocols in which five messages are sent,
with the prover always sending the first and last. This type of protocol is usually called 5-pass, and
messages are given specific names; to this end, see Figure 1. The first message sent by the prover is
called commitment. The two other messages sent by the prover are called responses, while the two
messages sent by the verifier are called challenges. The challenges are drawn uniformly at random from
two sets C1 and C2, respectively. Thus, one execution of the protocol corresponds to an (ordered) set of
messages of the form

T =
(
Com, Ch1, Rsp1, Ch2, Rsp2

)
.

We call T a transcript of the protocol. At the end of the interaction, the verifier returns a value
Out ∈ {0; 1} (which is computed as a function of all the messages that have been exchanged in the
round). We say T is an accepting transcript if it corresponds to the verifier returning 1.

The following properties must be satisfied for a protocol as in Figure 1 to be a ZK protocol.

- Completeness: an honest prover gets always accepted: a round initiated by a prover who knows sk
and follows the protocol always ends in the verifier outputting 1.

- Zero Knowledge: the interaction between P and V does not reveal any useful information about
the secret sk. This implies that knowing the challenge values in advance, a cheating prover can
produce accepting transcripts that are indistinguishable from those produced by an honest prover.

- Soundness: when V is honest (i.e., challenges are sampled from the uniform distributions over C1

and C2), a malicious prover P∗ (i.e., a prover that does not know sk) can only convince V with some
probability ε < 1. The quantity ε is typically called soundness error and, in practice, corresponds
to the probability that a cheating prover can correctly guess which subset of challenges will be
sampled by the verifier (plus a negligible quantity, corresponding to the likelihood that the prover
can solve some hard problem).

PROVER VERIFIER

Holds the secret key sk Holds the public key pk
Com−−−−−−−−−−−−→

Ch1
$←− C1

Ch1←−−−−−−−−−−−−
Rsp1−−−−−−−−−−−−−→

Ch2
$←− C2

Ch2←−−−−−−−−−−−−
Rsp2−−−−−−−−−−−−−→

Return Out ∈ {0; 1}

Figure 1: 5-pass interactive protocol
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When t parallel repetitions of a N -pass protocol with soundness error ε are considered, we obtain a
new N -pass protocol with soundness error εt. To distinguish between different rounds, we will use the
superscript (i), e.g., Com(i) will denote the commitment in the i-th round.

Fiat-Shamir transformation The Fiat-Shamir transformation [34] is a standard technique to turn
an interactive ZK protocol into a signature scheme. The transform makes the scheme non-interactive,
with the prover simulating the verifier by generating the challenges as the output of some one-way
function (e.g., a hash), using all the former messages as input. The message to be signed Msg is provided
as another input to the hash function; this way, the transcript becomes associated with Msg. To sum up,
the Fiat-Shamir transform operates as follows:

1) generate the commitment
Com =

(
Com(1) , Com(2) , . . . , Com(t)

)
;

2) generate the first challenge as

Ch1 =
(
Ch

(1)
1 , Ch

(2)
1 , . . . , Ch

(t)
1

)
= Hash

(
Msg , Com

)
;

3) compute the first response

Rsp1 =
(
Rsp

(1)
1 , Rsp

(2)
1 , . . . , Rsp

(t)
1

)
;

4) generate the second challenge as

Ch2 =
(
Ch

(1)
2 , Ch

(2)
2 , . . . , Ch

(t)
2

)
= Hash

(
Msg , Com , Ch1 , Rsp1

)
;

5) compute the second response

Rsp2 =
(
Rsp

(1)
2 , Rsp

(2)
2 , . . . , Rsp

(t)
2

)
.

The transcript of the protocol gives the resulting signature. In other words, the signing algorithm
consists of doing what the prover P would do in an honest execution of the protocol, except that the
prover locally generates the challenges. The verification algorithm, instead, emulates what the verifier V
would do after all messages have been received. Depending on the transcript, the output will be 1 (the
signature is accepted) or 0 (the signature is rejected).

Intuitively, the obtained signature scheme is secure since each challenge is generated as a one-way,
pseudo-random function of all the previously exchanged messages. As an example, changing the com-
mitment Com after the first challenge Ch1 has been generated is not possible (unless hash collisions are
found) since even a slight modification in Com would lead to unpredictable changes in the challenge Ch1.

To reduce the signature size, the challenges are normally omitted since they can be re-generated
during verification. In other words, the final signature will be of the form

Sign =
(
Salt , Com , Rsp1 , Rsp2

)
.

Commitments, seeds, and salt Commitments are typically implemented with hash functions: to
commit to a value x, the prover computes and sends Com = Hash(x). Formally, commitment functions
should be hiding and binding.2 Informally, the meaning of these properties is as follows:

- hiding : given Com, no information about x can be determined;

- binding : it is unfeasible to find two distinct messages x ̸= x′ which correspond to the same
commitment Com. Thus, the prover cannot modify x after committing to it.

2Notice that these properties come in different flavors, e.g., a commitment function may be statistically or computa-
tionally binding.
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Also, sometimes the value to which the prover commits is a length-λ seed. Without proper precautions,
attacks may find collisions in the commitments in time O(2λ/2). This way, an attacker may learn a value
even though the prover does not disclose it. Examples of attacks of this type and efficient countermeasures
are provided in [27]. In practice, it is enough to sample, for each newly generated signature, a fresh salt
of size 2λ. The salt is used as another input to the hash function: the commitment of a message x is
computed as

Com = Hash(x, Salt).

The salt is communicated with the signature, so the verifier recomputes and verifies the commitment.
Notice that, however, an attacker may still exploit the fact that the same salt is used for all t rounds

of each produced signature: finding a collision for one of these t rounds would cost (slightly) less than
O(2λ). Even though, in practice, the values of t are so small that the practical advantage would be
irrelevant, one can also protect from this attack with a simple countermeasure (again, recommended in
[27]). Namely, in round i, the prover commits to a value x by sending

Com = Hash(x, Salt, i).

Fiat-Shamir transformation of 5-pass schemes The Fiat-Shamir transformation of a ZK interac-
tive protocol with soundness error ε leads to a signature scheme admitting forgery attacks running in
time O(ε−1). Indeed, a cheating prover can repeatedly simulate the protocol by guessing the challenge
values and preparing coherent commitments and responses with such guesses. With probability ε, the
generated challenge values will be coherent with the initial guess: so this requires ε−1 attempts on av-
erage. Formally, one can prove that signature schemes obtained via the Fiat-Shamir paradigm achieve
EUF-CMA security. However, to protect from forgeries, some caution is needed.

When considering the Fiat-Shamir transformation of a ZK protocol obtained by t parallel executions
of a scheme with soundness error ε (as we do for CROSS), the above reasoning results in a forgery attack
with cost O(ε−t). So, one may choose t such that ε−t > 2λ: this is sometimes called the εt-heuristic.
However, for the case of 5-pass schemes, there exist instances in which the εt-heuristic fails, in the sense
that it does not rule out forgery attacks with time complexity lower than 2λ. An example is the attack
in [43], which is primarily described for MQDSS but applies to several 5-pass schemes. The idea is that a
malicious prover can take advantage of non-interactivity and, ultimately, produce transcripts that would
get accepted with a probability greater than εt. Note that the existence of this attack does not invalidate
the security proof for the scheme: the attack takes advantage of the proof being non-tight. Indeed, the
security proof for MQDSS [41] uses the forking lemma and is consequently non-tight: this implies that
the scheme asymptotically achieves EUF-CMA security but does not tell us how t should be chosen.

The authors of [43] provide accurate formulas for the cost of such forgery attacks. According to their
analysis, the cost depends only on t and the sizes of the challenges spaces, |C1| and |C2|. Since C1 and
C2 are essentially fixed (depending on the underlying ZK protocol), one must choose t large enough so
the cost is above 2λ. In practice, when the attack in [43] applies, the actual value of t is (moderately)
larger than that given by the εt-heuristic.

q2-Identification schemes CROSS is based on a ZK protocol which follows the structure of q2-
Identification schemes employed in MQDSS [41]. A ZK protocol is classified as a q2-Identification scheme
when it possesses the following properties:

i) |C1| = q;

ii) |C2| = 2;

iii) The probability that Com takes a given value is negligible in the security parameter.

This classification is helpful since following [41], it holds that the Fiat-Shamir transformation of parallel
executions of a q2-Identification protocol results in a signature scheme that is EUF-CMA secure. The
proof is based on the existence of a q2-Extractor [41], that is, a Probabilistic Polynomial-Time algorithm
E that returns (with non-negligible success probability 1− ε) the secret sk, given four distinct accepting
transcripts of the form

T =
(
Com , Ch1 , Rsp1 , Ch2 , Rsp2

)
, T ′ =

(
Com , Ch′1 , Rsp′1 , Ch′2 , Rsp′2

)
,

T ′′ =
(
Com , Ch′′1 , Rsp′′1 , Ch′′2 , Rsp′′2

)
, T ′′′ =

(
Com , Ch′′′1 , Rsp′′′1 , Ch′′′2 , Rsp′′′2

)
,
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with
Ch1 = Ch′′1 ̸= Ch′1 = Ch′′′1 ,

Ch2 = Ch′′2 ̸= Ch′2 = Ch′′′2 .

For the case of q2-Identification schemes, proving existence of the q2-Extractor is the same as showing
that the protocol is (2, 2)-out-of-(q, 2) special sound (see for instance [4, 5]), which immediately implies
soundness error

ε = 1−
(

1− 1

q

)(
1− 1

2

)
=

q + 1

2q
.

To sum up, once a ZK protocol is classified as a q2-Identification protocol, this guarantees that the
resulting signature scheme, obtained by Fiat-Shamir transforming t parallel executions, is EUF-CMA
secure. To choose the number t of parallel repetitions, we remark that one should consider the cost of
forgery attacks as the one in [43].

3.2 Coding Theory

3.2.1 Classical Coding Theory

A linear code C over the finite field Fp with length n and dimension k ≤ n is a k-dimensional linear
subspace of Fn

p . A compact representation for a code is a generator matrix, that is, a full-rank G ∈ Fk×n
p

such that C =
{
uG | u ∈ Fk

p

}
. We say that a code of length n and dimension k has rate R = k

n
and redundancy r = n − k. Equivalently, one can represent a code through a full-rank H ∈ Fr×n

p ,

called parity-check matrix, such that C =
{
c ∈ Fn

p | cH⊤ = 0
}

. The syndrome of some x ∈ Fn
p is the

length-r vector s = xH⊤. A set J ⊆ {1, . . . , n} of size k is called information set for C if |CJ | = pk,
where CJ = {cJ | c ∈ C}. It follows that GJ and HJC are invertible matrices. We say that a generator
matrix, respectively, a parity-check matrix is in systematic form (with respect to the information set J),
if GJ = Ik, respectively HJC = In−k. We endow the vector space Fn

p with the Hamming metric: given
x ∈ Fn

p , its Hamming weight wt(x) is the number of non-zero entries. The minimum distance of a linear
code is given by d = min{wt(c) | c ∈ C, c ̸= 0}. Recall that the Gilbert-Varshamov (GV) bound states
that R ≥ 1 − hp(d/n). It is well known that a random code attains the Gilbert-Varshamov bound for
large enough length n, meaning, for a random code, we may assume δ = d/n = h−1

p (1−R). Code-based
cryptography usually relies on the following NP-complete problem [14, 10].

Problem 1. Syndrome Decoding Problem (SDP)

Given H ∈ F(n−k)×n
p , t ∈ N, and s ∈ Fn−k

p , decide if there exists an e ∈ Fn
p such that wt(e) ≤ t and

eH⊤ = s.

We usually assume that the instance of the SDP is chosen uniformly at random, and therefore, the
code with the parity-check matrix H attains the GV bound. If the target weight t is less than the
minimum distance δn of the Gilbert-Varshamov bound, we expect to have a unique solution, if we have
any, since on average the number of solutions is given by pn(hp(δ)−1+R) ≤ 1.

3.2.2 Restricted Decoding Problem

This problem was first introduced for z = 2 in [7], then later for any z in [8].
Let us consider g ∈ F∗

p of prime order z and the subgroup E = {gi | i ∈ {1, . . . , z}} ⊂ F∗
p. Let us

denote by ⋆ the component-wise multiplication of vectors.
The Restricted Syndrome Decoding Problem (R-SDP), first introduced in [7], reads as follows.

Problem 2. Restricted Syndrome Decoding Problem (R-SDP)

Given g ∈ F∗
p of order z, H ∈ F(n−k)×n

p , s ∈ Fn−k
p , and E = {gi | i ∈ {1, . . . , z}} ⊂ F∗

p, decide if there

exists e ∈ En such that eH⊤ = s.

The R-SDP is strongly related to other well-known hard problems. For example, when z = p− 1, the
R-SDP is close to the classical SDP; if z = 1, the R-SDP is similar to the Subset Sum Problem (SSP)
over finite fields. Consequently, it is unsurprising that the R-SDP is NP-complete for any choice of E.

Theorem 3. The R-SDP (Problem 2) is NP-complete.
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The proof for the NP-completeness can be found in [53], where the authors show that the additivity of
the weight and having a unit in the ambient space of the error vector is enough to obtain NP-completeness.
For the sake of completeness, we add the proof here.

Proof. We prove the NP-completeness by a reduction from the 3DM problem. For this, we start with
a random instance of 3DM with T of size t = n, and U ⊆ T × T × T of size u = n. Let us denote
the elements in T = {b1, . . . , bt} and in U = {a1, . . . ,au}. From this we build the incidence matrix

H̃⊤ ∈ Fu×3t
p as

• for j ∈ {1, . . . , t}, we set hi,j = 1 if ai[1] = bj and hi,j = 0 else,

• for j ∈ {t + 1, . . . , 2t}, we set hi,j = 1 if ai[2] = bj and hi,j = 0 else,

• for j ∈ {2t + 1, . . . , 3t}, we set hi,j = 1 if ai[3] = bj and hi,j = 0 else.

With this construction, each column of H̃ corresponds to an element in U and has weight 3. Since
H̃ ∈ Fu×3t

p , which in our case (as we have full weight t = n) is a n×3n matrix, we get a trivial parity-check
matrix. We thus have to append more rows: Define

H⊤ =

(
H̃⊤ 0
0 1⊤

)
∈ F(n+N)×(3n+1)

p ,

where 1 = (1, . . . , 1) ∈ FN
p . Now N has to be chosen such that considering such parity-check matrix

makes sense, i.e., N > 2n + 1. At the same time, we will choose p > N. Let us set the syndrome
s = (1, . . . , 1, N) ∈ F3n+1

p . Assume that we can solve the R-SDP on the instances H, s, and E = {gi | i ∈
{1, . . . , z}}, for some g of order z, in polynomial time. Let us consider two cases.

Case 1: First, assume that the R-SDP solver returns as answer ‘yes’, i.e., there exists an e ∈ En+N ,
such that eH⊤ = s. That is,

eH⊤ = (ẽ, ẽ′)

(
H̃⊤ 0
0 1⊤

)
= (1, . . . , 1, N),

hence ẽH̃⊤ = (1, . . . , 1) and
∑N

i=1 ẽ
′
i = N. Since we have that

∑N
i=1 ẽ

′ = N , for ẽ′ ∈ EN and N < p, this
implies that also ẽ′ = (1, . . . , 1).

Note that the first part ẽH̃⊤ = (1, . . . , 1) belongs to the standard proof of [53, 10].

• There it is shown that such ẽ must be 1 ∈ En. In fact, one must have wtH(ẽ) = n. For this

note that each column of H̃ adds at most 3 non-zero entries to the syndrome s̃ = (1, . . . , 1) ∈ F3n
p .

Therefore, we need to add at least n columns to get s̃, and since ẽ has length n, it must be a
full-weight vector.

• Secondly, we observe that the solution must be the all-one vector. For this, we note that the matrix
H̃ has entries in {0, 1} and has constant column weight three, and since ẽ has full weight n, the

supports of the n columns of H̃ that sum up to the all-one vector have to be disjoint. Therefore,
we get that the j-th equation from the system of equations ẽH̃⊤ = s̃ is of the form eihi,j = 1 for
all i. Since hi,j = 1, we have ei = 1.

Recall from above that the columns of H̃ correspond to the elements of U . The n columns corresponding
to ẽ are now a solution W to the 3DM problem. This follows from the fact that the n columns have
disjoint supports and add up to the all-one vector, which implies that each element of T appears exactly
once in each coordinate of the elements of W .

Case 2: If the solver returns the answer ‘no’, this is also the correct answer for the 3DM problem. It
is easy to see that the above construction also associates any solution W of the 3DM to a solution ẽ of
the corresponding R-SDP.

Thus, if such a polynomial time solver exists, we can also solve the 3DM problem in polynomial
time.

Note that we choose z as prime to work with the easy arithmetic over the finite field Fz. It is well-
known that for z | p− 1, there are φ(z) many elements of order z in Fp. Since we chose z to be a prime,
we get z − 1 such elements, which are all in E. That is, for any element g of order z, and any element
a ∈ E = {gi | i ∈ {1, . . . , z}} with a ̸= 1, the order of a is also z, and we could have equivalently picked
a to generate E.
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Uniqueness of the solution to R-SDP We always consider that an R-SDP instance has been chosen
uniformly at random. That is, both the parity-check matrix H and e have been generated by sampling

from F(n−k)×n
p and En uniformly at random. Consequently, the anticipated number of solutions we

expect to have, on average, is
zn

pn−k
= 2n

(
log2(z)−(1−R) log2(p)

)
.

When z and R are such that log2(z) ≤ (1−R) log2(p), we expect to have at most one solution.

Restricted vectors Note that (En, ⋆) is a commutative, transitive group isomorphic to (Fn
z ,+). The

isomorphism is given by

ℓ : En → Fn
z ,

x = (gℓ1 , . . . , gℓn) 7→ ℓ(x) = (ℓ1, . . . , ℓn).

This representation of vectors in En as vectors in Fn
z is helpful to shorten the sizes of objects. For the

opposite direction of the isomorphism, we use the following abuse of notation

a = gℓ(a) = (gℓ(a)1 , . . . , gℓ(a)n),

for some ℓ(a) = (ℓ(a)1, . . . , ℓ(a)n) ∈ Fn
z .

Since any restricted vector a ∈ En can be compactly represented as a vector ℓ(a) ∈ Fn
z we only require

n log2(z) bits to represent a restricted vector.

Restricted transformations A linear map φ : En → En which acts transitively on En is simply given
by component-wise multiplication, i.e., φ(b) = a ⋆b, for some a ∈ En. In fact, for any a = gℓ(a) and any
b = gℓ(b) we can always find c = gℓ(a)−ℓ(b) such that a = c ⋆ b.

Let the map φ be the component-wise multiplication with a ∈ En. Then we can compactly represent
φ through the vector ℓ(a) ∈ Fn

z . Additionally, the computation φ(b) = a ⋆ b is given by an addition in
Fn
z ; namely ℓ(a) + ℓ(b). Thus, we only require n log2(z) bits to represent restricted transformations.

3.2.3 Restricted Decoding Problem in a Subgroup

We can also further generalize this problem by considering a subgroup (G, ⋆) ≤ (En, ⋆) as

G = ⟨a1, . . . ,am⟩ =

{
m∏
i=1

aui
i | ui ∈ {1, . . . z}

}
,

for some m < n. Thus, we can update the R-SDP to the R-SDP(G):

Problem 4. Restricted Syndrome Decoding Problem with subgroup G (R-SDP(G))

Let G = ⟨a1, . . . ,am⟩, for ai ∈ En, H ∈ F(n−k)×n
p , and s ∈ Fn−k

p . Does there exist a vector e ∈ G with

eH⊤ = s?

The R-SDP(G) is still an NP-hard problem since the R-SDP is NP-hard. That is, if there exists a
polynomial time solver that can solve the problem for any G, then this solver could also solve G = En.
Notice that R-SDP(G) admits fewer solutions than the more general R-SDP. Consequently, we can
modify the criterion to have a unique solution as

|G|p−(1−R)n ≤ 1,

and setting |G| = zm we obtain m logp(z) ≤ (1−R)n.
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Restricted vectors from the subgroup To construct elements e ∈ G, we can collect all the expo-
nents of the generators ai into a matrix. That is, we define the matrix MG ∈ Fm×n

z as

MG =

 ℓ(a1)1 · · · ℓ(a1)n
...

...
ℓ(am)1 · · · ℓ(am)n

 =

 ℓ(a1)
...

ℓ(am)

 .

To check whether |G| = zm, it is enough to verify rank(MG) = m. In order to construct an element
e ∈ G, we can then simply pick any vector u ∈ Fm

z and compute ℓ(e) = uMG ∈ Fn
z , since then e = gℓ(e).

To this end, we introduce the group homomorphism ℓG:

ℓG : G→ Fm
z ,

e = au1
1 ⋆ · · · ⋆ aum

m 7→ ℓG(e) = (u1, . . . , um).

Thus, to sample e ∈ G, it is enough to choose ℓG(e) ∈ Fm
z . To represent restricted vectors in the

subgroup, we require only m log2(z) bits.

Restricted transformations in the subgroup The linear maps φ : G → G, which act transitively
on G, are still given by component-wise multiplication with another element in G, i.e., for e ∈ G,
φ(e) = e′ ⋆e. Thus, we can again represent the map by a vector in Fm

z and the operation on e ∈ G as an
addition in Fm

z . To represent restricted transformations in the subgroup, we again require just m log2(z)
bits.

4 A Comprehensive Overview of CROSS

In this chapter, we succinctly describe the CROSS signature scheme. We first introduce the underlying
ZK protocol, CROSS-ID, and show that it is a q2-Identification protocol with a q2-Extractor. Our
protocol is essentially derived from the CVE ZK protocol [26] originally proposed for SDP. We adapt
such a scheme to the R-SDP setting and apply some standard optimizations to reduce communication
costs. We prove that our protocol achieves zero-knowledge, completeness, and soundness, with soundness
error ε = p

2(p−1) . This implies that the Fiat-Shamir transformation of parallel executions of this protocol

yields a signature scheme that is EUF-CMA secure.
We then proceed by applying other optimizations that are effective only when parallel executions are

considered, e.g., using Merkle and PRNG trees and an unbalanced distribution for the second challenge,
aiming to reduce the communication cost and, consequently, the signature size.

We describe the protocol in terms of R-SDP(G), which also encompasses the R-SDP version by simply
setting G = En, which also implies m = n.

4.1 CROSS ZK protocol

The ZK protocol employed in CROSS is described in Figure 2. What sets this scheme aside from CVE is
that in our protocol, the prover first samples a transformed error vector e′ ∈ G and a random u′ ∈ Fn

p ,
and only then do they find the transformation σ ∈ G such that e = σ(e′). Notice that σ : G 7→ G
is a bijection, so that σ is uniformly random over G provided that e′ is sampled uniformly at random
from G. Since u′ is uniformly random over Fn

p , y = u′ + βe′ follows the uniform distribution over Fn
p .

Here, β ∈ F∗
p is the first challenge. Another difference with respect to CVE is that the first response

is h = Hash(y). The second challenge, which we indicate by b, is either 0 or 1. When b = 1, one can
communicate the seed which was used to sample both u′ and e′: this shows that indeed y has been
generated as the sum of a masking vector and a restricted vector which has been scaled by β. This
strategy saves us some communication cost since sending h requires fewer bits than y. When b = 0, the
prover reveals y, together with σ (which is not a random transformation, hence it cannot be compressed
using seeds).

We briefly comment on how some of the operations in the protocol can be efficiently implemented:

- The group G is represented by a basis MG ∈ Fm×n
z . This can be conveniently provided in the form

MG =
(
Im,W

)
, with W ∈ Fm×(n−m)

z . To sample uniformly at random from G, it is enough to
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Private Key e ∈ G

Public Key G ⊆ En, H ∈ F(n−k)×n
p , s = eH⊤ ∈ Fn−k

p

PROVER VERIFIER

Sample Seed
$←− {0; 1}λ

Sample (e′,u′)
Seed←−−− G× Fn

p

Compute σ ∈ G such that σ(e′) = e
Set u = σ(u′)
Compute s̃ = uH⊤

Set c0 = Hash
(
s̃, σ

)
Set c1 = Hash

(
u′, e′

)
(c0,c1)−−−−→
β←−− Sample β

$←− F∗
p

Compute y = u′ + βe′

Set h = Hash(y)
h−−→

Sample b
$←− {0, 1}

b←−−
If b = 0, set f :=

(
y, σ

)
If b = 1, set f := Seed

f−−→
If b = 0:

Compute ỹ = σ(y) and s̃ = ỹH⊤ − βs
Accept if:

1) Hash(y) = h
2) Hash

(
s̃, σ

)
= c0

3) σ ∈ G
If b = 1:

Sample (e′,u′)
Seed←−−− G× Fn

p

Set y = u′ + βe′

Accept if:
1) Hash(y) = h
2) Hash

(
u′, e′

)
= c1

Figure 2: CROSS-ID

1. sample a
$←− Fm

z ,

2. obtain the exponents x = aMG ∈ Fn
z ,

3. obtain the restricted vector/isometry as
(
gx1 , . . . , gxn

)
∈ Fn

p .

Notice that a is the ℓG representation of the restricted object we have sampled. Using MG in
systematic form, we have a computational advantage since x = (a,aW) and computing aW
requires only O

(
m(n−m)

)
operations over Fz.

- The ℓG representation for σ can be easily computed as ℓG(σ) = (a1, . . . , am) = ℓG(e) − ℓG(e′).
The verifier will simply verify that ℓG(σ) ∈ Fm

z and will locally regenerate σ by first computing the
coefficients ℓG(σ)MG ∈ Fn

z , then using them as the exponents for g.

- The matrix W, as well as the parity-check matrix H, can be sampled from a unique seed Seedpk ∈
{0; 1}2λ which is included in the public key. This way, the public key is {s, Seedpk} and has size
(n− k) log2(p) + 2λ. We will use Seedpk with 2λ bits.

- When relying on R-SDP, there is no need to use G. The seed Seedpk is used to sample only H.
The exponents of σ can be simply obtained as ℓ(e)− ℓ(e′).

We now proceed to show that the protocol in Figure 2 achieves zero-knowledge, completeness, and
(2, 2)-out-of-(p− 1, 2) special soundness. Consequently, it is a q2-Identification protocol where q = p− 1
and has soundness error p

2(p−1) .

14



CROSS NIST Submission 2023

Proposition 5 (Completeness). The protocol in Figure 2 is complete.

Proof. We have to show that the honest prover always gets accepted. When b = 0, we have

ỹ = σ(y) = σ(u′) + βσ(e′) = u + βe.

So, it holds that
ỹH⊤ − βs = uH⊤ + βeH⊤ − βs = s̃ + βs− βs = uH⊤.

This indeed corresponds to the syndrome that was used to generate c0. Finally, we also verify that
σ ∈ G. When b = 1, the prover provides only seeds: since PRNGs are deterministic, the verifier obtains
the very same quantities that have been used to generate the commitments.

Proposition 6 (Zero-Knowledge). The protocol in Figure 2 achieves zero-knowledge.

Proof. We prove that a simulator S with knowledge of the challenges can easily simulate the interaction
⟨P,V⟩ between the prover and the verifier. Formally, we show that S produces a communication tape
T ∗ that is indistinguishable from the T resulting from the interaction between ⟨P,V⟩. We define two
strategies that S can follow, which will depend uniquely on the value of b (i.e., the second challenge).

- Strategy for b = 0: The simulator S finds, with simple linear algebra, a vector e∗ ∈ Fn
p with

syndrome s, i.e., such that e∗H⊤ = s. Then, S selects a random σ∗ ∈ G and a vector u∗ ∈ Fn
p ,

and computes u′∗ = σ∗−1(e∗). Finally, it computes s̃∗ = u∗H⊤ and c0 = Hash(s̃∗, σ∗). Then, S
computes y∗ = u′∗ + βe′∗. It is easy to see that the transcript produced by S (i.e., the values y∗

and σ∗) follow the same statistical distribution as those of an honestly produced transcript. Indeed,
in an honest execution, y is uniformly random over F∗

p because u′ is uniformly random over Fn
p .

This guarantees that u′ + βe′ is uniformly random over Fn
p , and the same holds after applying the

transformation σ. Finally, in an honest execution of the protocol, σ is uniformly distributed over
G. Indeed, for any e′ ∈ G there is a unique σ ∈ G such that σ(e′) = e. If e′ is uniformly random
over G, then σ also follows the same distribution. The commitment which is not verified can be
chosen as a random binary string with length 2λ. Under the ROM, this has the same statistical
distribution as an honestly computed c1.

- Strategy for b = 1: In this case, the simulator simply executes the protocol by sampling the seed
and computing c1 analogously to what the honest prover P would do. For the other commitment,
c0, it is enough to use a random binary string again.

Proposition 7 (Soundness). The protocol in Figure 2 is sound, with soundness error ε = p
2(p−1) .

Proof. We consider an adversary A that tries to impersonate the prover; that is, they aim to reply
correctly to the verifier’s challenges. We first sketch two cheating strategies that achieve a success prob-
ability of ε = p

2(p−1) , and then we show that these strategies are optimal in the sense that the success

probability is maximum and corresponds to the soundness error. We will do this by proving that the
protocol is (2, 2)-out-of-(p − 1, 2) special sound: from this, the formula for the soundness error follows
[4, 5]. Notice that the cheating strategies are not necessary for the proof but are provided for complete-
ness.

Strategy 0: The adversary A aims to always answer correctly in case b = 0, but also guesses β∗ in an
attempt to be accepted in the case b = 1. For this, the adversary first chooses β∗ ∈ F∗

p and a seed Seed

which is used to sample u′ ∈ Fn
p and e′ ∈ G. The adversary also chooses a random σ ∈ G and computes

y∗ = u′ + β∗e′. The commitment c1 is prepared as c1 = Hash(u′, e′). Now, the adversary computes
s̃ = σ(y∗)H⊤ and sets c0 = Hash(s̃ − β∗s, σ). Finally, the adversary chooses a vector ẽ ∈ Fn

p such that

ẽH⊤ = s and a vector ũ ∈ Fn
p such that ũH⊤ = σ(y∗)H⊤ − β∗s. The adversary sends c0, c1 to the

verifier and receives β.
If β = β∗, then the adversary replies with h = Hash(y∗). If the verifier asks for b = 0, the adversary

sends (y∗, σ) and gets accepted since Hash(y∗) = h, σ ∈ G, and

c0 = Hash(σ(y∗)H⊤ − βs, σ) = Hash(s̃− β∗s, σ).
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If b = 1, the adversary replies with the seed to compute e′ and u′. Also in this case, the adversary gets
accepted as h = Hash(u′ + β∗e′) and c1 = Hash(u′, e′).

If, however, β ̸= β∗, the adversary sends a different h. Namely, the adversary computes y =
σ−1(ũ) + βσ−1(ẽ) and sends h = Hash(y). If the verifier then asks for b = 0, the adversary sends (y, σ)
and gets accepted as h = Hash(y), σ ∈ G, and

c0 = Hash(σ(y)H⊤ − βs, σ) = Hash(ũH⊤, σ) = Hash(σ(y∗)H⊤ − β∗s, σ).

If the verifier asks for b = 1, the adversary has no chance of success.
Consequently, this strategy has a success probability given by

Pr [b = 0] + Pr [(b = 1) ∧ (β = β∗)] =
1

2
+

1

2(p− 1)
=

p

2(p− 1)
.

Strategy 1: The adversary hopes to receive the challenge b = 1 but, again, prepares to reply also for
b = 0 by guessing the value of β. The adversary starts by choosing a β∗ ∈ F∗

p. The adversary selects a
seed from which they generate u′ ∈ Fn

p and e′ ∈ G. The adversary also picks a σ ∈ G and computes

u = σ(u′), ẽ = σ(e′) ∈ G. The adversary calculates s̃ = uH⊤ + β∗ẽH⊤ − β∗s. The adversary will
send the commitments c0 = Hash(s̃, σ) and c1 = Hash(u′, e′). When the adversary receives β ∈ F⋆

q , the
adversary still computes y = u′ + e′β and sends the Hash h.

If the adversary gets challenged with b = 1, they send the seeds of u′ and e′, and will be accepted
with probability one. This follows as the verifier uses the seeds to reconstruct u′ and e′, and they can
check that h = Hash(u′ + βe′) and c1 = Hash(u′, e′).

However, if the adversary is given the challenge b = 0, they send (y, σ) and can only get accepted if
β = β∗, since then

σ(y)H⊤ − βs = uH⊤ + βẽH⊤ − βs = s̃.

Hence, in this case, c0 = Hash(σ(y)H⊤ − βs, σ) and h = Hash(y), with σ ∈ G. Thus, this strategy has a
success probability given by

Pr [b = 1] + Pr [(b = 0) ∧ (β = β∗)] =
1

2
+

1

2(p− 1)
=

p

2(p− 1)
.

(2, 2)-out-of-(p − 1, 2) special soundness We consider four accepting transcripts T1, T2, T3, T4, all asso-
ciated with the same pair of commitments c0, c1. The commitment c0 fixes the pair (s̃, σ), while the
commitment c1 fixes the pair (u′, e′). We identify the transcripts by the challenge values, which we
denote respectively by (β, 0), (β, 1), (β∗, 0), and (β∗, 1). Taking into account the prover’s replies, we
have that the transcripts are structured as follows:

T1:
(
c0, c1, β, h,y, σ

)
;

T2:
(
c0, c1, β, h, Seed

)
;

T3:
(
c0, c1, β

∗, h∗,y∗, σ∗);
T4:

(
c0, c1, β

∗, h∗, Seed∗
)
.

We now show that, from the knowledge of these four transcripts, a solution for the R-SDP(G) instance
{s,H} can be easily computed (i.e., in polynomial time). We first focus on T2 and T4. Let u′, e′ be the
vectors generated from Seed, and u′∗, e′∗ those generated from Seed∗. Since c1 is verified in both cases,
either hash collisions have been found (i.e., Hash

(
u′, e′

)
= Hash

(
u′∗, e′∗

)
but u′ ̸= u′∗ and/or e′ ̸= e′∗),

or u′ = u′∗ and e′ = e′∗. Since also h and h∗ are checked, and unless hash collisions have been found, this
guarantees that h = Hash(y), where y = u′+βe′, and h∗ = Hash(y∗), where y∗ = u′∗+β∗e′∗ = u′+β∗e′.
This implies that y − y∗ = e′(β − β∗). Now, we look at the pair of transcripts T1 and T3. Unless hash
collisions have been found, we have σ = σ∗,

σ(y)H⊤ − βs = s̃, and σ(y∗)H⊤ − β∗s = s̃,

from which it follows that
σ(y − y∗)H⊤ = (β − β∗)s.
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Exploiting the relations we derived from the pair (T2, T4), we obtain y − y∗ = (β − β∗)e′, where e′ is a
restricted vector, hence

(β − β∗)σ(e′)H⊤ = (β − β∗)s =⇒ σ(e′)H⊤ = s.

Since σ, e′ have been verified, thus σ, e′ ∈ G; then σ(e′) ∈ G means that σ(e′) solves R-SDP(G) for the
instance {H, s}.

4.2 Fiat-Shamir Transformation with fixed weight challenges

Since the protocol in Figure 2 can be classified as a q2-Identification protocol as in [41], when considering
t parallel executions and applying the Fiat-Shamir transformation, we obtain a scheme that achieves
EUF-CMA security.

Theorem 8. CROSS, the signature scheme resulting after applying the Fiat-Shamir transform on t
parallel executions of a q2-Identification protocol, achieves EUF-CMA security.

This follows from the fact that CROSS applies the Fiat-Shamir transform on t parallel executions of
a q2-Identification protocol and by the arguments from [41].

All the messages that are exchanged in the i-th round are indicated with the apix (i), e.g., c
(i)
0 and

c
(i)
1 are the commitments while h(i) is the hash of the vector y(i), computed as u′(i) + β(i)e′(i). To be

consistent with the notation used in Section 3.1, we group all the messages exchanged during the t rounds
as follows.

Round 1 Round 2 · · · Round t

Commitment =
(

c
(1)
0 c

(1)
1 c

(2)
0 c

(2)
1 · · · c

(t)
0 c

(t)
1

)
First challenge =

(
β(1) β(2) · · · β(t)

)
First response =

(
h(1) h(2) · · · h(t)

)
Second challenge =

(
b(1) b(2) · · · b(t)

)
Second response =

(
f (1) f (2) · · · f (t)

)
We use the Fiat-Shamir transformation as described in Section 3.1. To prevent the use of attacks based
on commitments collisions, we make use of a length-2λ salt Salt, as suggested in [27]. A graphical
representation of how challenges are generated is shown in Figure 3.

Message: Msg

Salt: Salt

Commitment:
(
c
(1)
0 , . . . , c

(t)
1

)
First Challenge:

(
β(1), . . . , β(t)

)
First Response:

(
h(1), . . . , h(t)

)
Second Challenge:

(
b(1), · · · , b(t)

)

One-way function

One-way function

Figure 3: Flowchart representation of challenges generation in the Fiat-Shamir transformation
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4.2.1 Fixed Weight Second Challenge

When applying the Fiat-Shamir transformation, we consider that the second challenge (b(1), . . . , b(t)) has
always weight w, i.e., there are exactly w rounds where the verifier asks for b = 1, and t − w rounds
where b = 0. In the case b = 1 the prover can just send a length-λ seed and does not need to reveal y
(since it can be recomputed by the verifier). Since the signature size depends (also) on how many rounds
use b = 0 and how many rounds use b = 1, requiring these values to be constant reduces variability in
the signature size and, moreover, simplifies constant-time implementations.

Fixing the value of w comes with some consequences:

- When w is close to t, the majority of rounds require only a very small communication cost. In such
a case, specific optimizations to further reduce the signature size can be applied. We discuss them
in the remainder of this section;

- attackers may exploit the knowledge that the second challenge has constant weight w. In Section
7.3.1, we take this into account and analyze how it affects the cost of forgery attacks.

Depending on the ratio between w and t, we distinguish between three different versions for the CROSS
signature scheme. In the first version, which is the one we employ in CROSS-fast variant, we have w ≈ t/2
and t slightly larger than λ. In the second and third versions, which we employ in CROSS-balanced and
CROSS-small, we instead have that w is close to t and that t is much greater than λ.

Both versions use some well-known optimizations to reduce the signature size. Some of them apply
to any setting of the protocol (i.e., any pair of values t and w), while others are meaningful only when
w is close to t. We begin by consider optimizations of the first type, which are employed in CROSS-fast.

We then focus on the case in which w is close to t and consequently consider optimizations of the
latter type; the corresponding signature scheme is employed for CROSS-balanced and CROSS-small.

Notice that all the techniques we use are standard, are employed in several modern signature schemes,
and are essentially transparent from a security point of view. The only modification that may warrant
some discussion is requiring a fixed weight for the second challenge since (as previously mentioned) this
affects the cost of forgeries. This latter version will, consequently, rely on some further optimizations.

We proceed by first describing the CROSS-fast signature scheme, which we derive by applying some
optimizations to the straightforward Fiat-Shamir transformation of (t parallel repetitions of) the protocol
in Figure 2. Then, in the subsequent section, we show the scheme employed in CROSS-balanced and
CROSS-small, in which we consider two further optimizations, namely, the use of a Merkle tree for the

commitments c
(1)
0 , . . . , c

(t)
0 and a seed tree for the seeds Seed(1), . . . , Seed(t).

Let us denote by c0 = Hash(c
(1)
0 , . . . , c

(t)
0 ) and by c1 = Hash(c

(1)
1 , . . . , c

(t)
1 ). Then, we denote by GenCh1

the one-way function, which takes as inputs Msg, Salt, and the commitments (c0, c1), and outputs the
first challenge vector (β(1), . . . , β(t)) ∈ (F⋆

p)t. Similarly, we denote by GenCh2 the one-way function, which

takes as inputs Msg, Salt, the first challenge vector (β(1), . . . , β(t), h and the commitments (c0, c1), and
outputs the second challenge vector (b(1), . . . , b(t)) ∈ {0, 1}t of fixed weight w.

4.3 CROSS-fast

The description of the algorithms for signature generation and verification are given in Figures 4 and 5.
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Private Key e ∈ G

Public Key G ⊆ En, H ∈ F(n−k)×n
p , s = eH⊤ ∈ Fn−k

p

Input Message Msg

Output Signature Signature

SIGNER VERIFIER

Sample Salt
$←− {0; 1}2λ

For i = 1, . . . , t:

Sample Seed(i)
$←− {0; 1}λ

Sample (e′(i),u′(i))
Seed(i)←−−−− G× Fn

p

Compute σ(i) ∈ G such that σ(i)(e′(i)) = e
Set u(i) = σ(i)(u′(i))
Compute s̃(i) = u(i)H⊤

Set c
(i)
0 = Hash

(
s̃(i), σ(i), Salt, i

)
Set c

(i)
1 = Hash

(
u′(i), e′(i), Salt, i

)
Compute c0 = Hash

(
c
(1)
0 , . . . , c

(t)
0

)
Compute c1 = Hash

(
c
(1)
1 , . . . , c

(t)
1

)
Compute c = Hash

(
c0, c1

)
Generate

(
β(1), . . . , β(t)

)
= GenCh1

(
c, Msg, Salt

)
For i = 1, . . . , t:

Compute y(i) = u′(i) + β(i)e′(i)

Compute h(i) = Hash
(
y(i)

)
Compute h = Hash

(
h(1), . . . , h(t)

)
Generate

(
b(1), . . . , b(t)

)
= GenCh2

(
c, β(1), . . . , β(t), h, Msg, Salt

)
For i = 1, . . . , t:
If b(i) = 0:

Set f (i) :=
(
y(i), σ(i), c

(i)
1

)
Else:

Set f (i) :=
(
Seed(i), c

(i)
0

)
Set Signature =

{
Salt, c, h, {f (i)}i=1,...,t

}
Signature−−−−−−−−−−−−−−−−→

Figure 4: The CROSS-fast signature scheme: signature generation
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Private Key e ∈ G

Public Key G ⊆ En, H ∈ F(n−k)×n
p , s = eH⊤ ∈ Fn−k

p

PROVER VERIFIER
Signature−−−−−−−−−−−−−−−−→

Generate
(
β(1), . . . , β(t)

)
= GenCh1

(
c, Msg, Salt

)
Generate

(
b(1), . . . , b(t)

)
= GenCh2

(
c, β(1), . . . , β(t), h, Msg, Salt

)
For i = 1, . . . , t:
If b(i) = 0:

Set h(i) = Hash
(
y(i)

)
Compute s̃(i) = σ(i)(y(i))H⊤ − β(i)s

Set c
(i)
0 = Hash

(
s̃(i), σ(i), Salt, i

)
Else:

Sample (e′(i),u′(i))
Seed(i)←−−−− G× Fn

p

Set c
(i)
1 = Hash

(
u′(i), e′(i), Salt, i

)
Compute y(i) = u′(i) + β(i)e′(i)

Compute h(i) = Hash(y(i))

Verify h = Hash
(
h(1), . . . , h(t)

)
Compute c0 = Hash

(
c
(1)
0 , . . . , c

(t)
0

)
Compute c1 = Hash

(
c
(1)
1 , . . . , c

(t)
1

)
Verify c = Hash

(
c0, c1

)
Figure 5: The CROSS-fast signature scheme: signature verification

Notice that the only optimizations we have applied are aggregating the commitments and first re-
sponses and postponing their verification to the end of the verification algorithm. Indeed, in every round,
the verifier possesses y(i) (either it is received directly from the prover, or it is recomputed locally from
Seed(i)). Instead of responding with

(
h(1), . . . , h(t)

)
, the prover more conveniently sends

h = Hash
(
y(1),y(2), . . . ,y(t)

)
.

To generate the second challenge, the prover uses h (this value is also included in the signature). After
executing all rounds, the verifier can locally recompute h. If the verifier’s computation matches the given
value of h, either a hash collision has occurred or the t vectors y(1), . . . ,y(t) were indeed valid.
The public key size is

|pk| = (n− k)⌈log2(p)⌉+ 2λ.

The signature size is

|Signature| = 6λ︸︷︷︸
Salt, c, h

+w · 3λ︸︷︷︸
Responses for b(i) = 1

+(t− w) (2λ + n⌈log2(p)⌉+ m⌈log2(z)⌉)︸ ︷︷ ︸
Responses for b(i) = 0

. (1)

For this, note that the responses b(i) = 1 appears w times and b(i) = 0 appears t−w times. The response

for b(i) = 1 consists of Seed(i) of size λ and c
(i)
0 of size 2λ, whereas for b(i) = 0 the response consists of

y(i), which needs n⌈log2(p)⌉ bits, σ(i), which needs m⌈log2(z)⌉ bits and c
(i)
1 of size 2λ. When R-SDP is

considered, m needs to be replaced with n.

4.4 CROSS-small and CROSS-balanced

We now consider the signature scheme used in CROSS-small and CROSS-balanced. These variants
consider the weight w to be very close to t, say, significantly larger than t/2. Two further optimizations
can be employed in this case; we describe them before introducing the resulting signature scheme.

Using a Seed Tree For each execution of the signing algorithm, we have t seeds Seed(1), . . . , Seed(t),
which are used to sample u′(i) and e′(i) in each round. We generate these seeds employing a tree

structure, having as a root MSeed||Salt, where MSeed
$←− {0; 1}λ is sampled at the beginning of the

signing algorithm. The seeds Seed(1), . . . , Seed(t) are the leaves in the base layer of the tree.

20



CROSS NIST Submission 2023

Notice that the prover is asked for a seed in all but t−w rounds. Hence, the prover has to reveal all

but t−w seeds; the maximum number of tree nodes that need to be revealed is (t−w) log2

(
t

t−w

)
. So,

sending all seeds has an overall communication cost of

|SeedPath| = λ(t− w) log2

(
t

t− w

)
. (2)

Using a Merkle Tree for Commitments In each round, the verifier can always locally recompute
one of the two commitments. Since the second challenge has fixed weight w which is close to t, the

verifier will recompute the majority of the commitments c
(i)
1 and only a few of the commitments c

(i)
0 . For

what concerns the commitments c
(i)
1 , the prover can more conveniently commit to a unique hash digest

c1 = Hash
(
c
(1)
1 , . . . , c

(t)
1

)
.

Let J ⊆ {1, . . . , t} be the support of
(
b(1), . . . , b(t)

)
(i.e., the set of indices i for which b(j) = 1): the

verifier will possess all the c
(i)
1 with i ∈ J , and will miss only those with index i ̸∈ J . For each index

i, the prover can include c
(i)
1 in the second response. This way, the overall cost associated with the

commitments c
(1)
1 , . . . , c

(t)
1 is

|Com(1)| = 2λ︸︷︷︸
c1

+ 2(t− w)λ︸ ︷︷ ︸
c
(i)
1 , i ̸∈J

= 2λ(t− w + 1). (3)

For the commitments c
(i)
0 , instead the prover can prepare a Merkle tree T using c

(1)
0 , . . . , c

(t)
0 as the leaves

in the base layer. We denote by c0 the root of T . The verifier can locally recompute all the c
(i)
0 with

i ̸∈ J ; to certify that the prover has indeed committed to these values, the verifier will ask for the Merkle

proofs of c
(i)
0 .

Notice that there are t−w rounds in which the second challenge has value 0. Naively, sending all of
these proofs would require (t−w) log2(t) hash digests (log2(t) digests for each of the t−w leaves for which
the proof is required). More conveniently, one can consider that these proofs will have some common

paths: indeed, the number of distinct hashes that are needed is not greater than (t − w) log2

(
t

t−w

)
.

Hence, the overall cost associated with the commitments c
(1)
0 , . . . , c

(t)
0 is upper bounded by

|Com(0)| = 2λ︸︷︷︸
c0

+ 2λ(t− w) log2

(
t

t− w

)
︸ ︷︷ ︸
Merkle proof for c

(i)
0 , i ̸∈ J

= 2λ

(
1 + (t− w) log2

(
t

t− w

))
. (4)

The Resulting Signature Scheme Summarizing all the optimizations that we are considering, the
final scheme follows this workflow:

Signing:

1. sample a salt Salt
$←− {0; 1}2λ;

2. sample a master seed MSeed
$←− {0; 1}λ and create the seed tree with t leaves Seed(1), . . . , Seed(t)

in the base layer. Seed number i, i.e., Seed(i), is employed to sample u′(i) and e′(i), which are used
for round i. Commitments are stored as c = Hash(c0, c1);

3. for round i = 1, . . . , t compute the restricted transformation σ(i) and the commitments c
(i)
0 , c

(i)
1 as

defined in CROSS-ID. Salt the hash function used to compute commitments with Salt and the
round index i;

4. construct the Merkle tree T with commitments c
(1)
1 , . . . , c

(t)
1 ;

5. generate the first challenge
(
β(1), . . . , β(t)

)
using the message, the salt, and the commitments;

6. compute
(
y(1), . . . ,y(t)

)
according to CROSS-ID, and hash all of these vectors into h;

21



CROSS NIST Submission 2023

7. generate the second challenge b =
(
b(1), . . . , b(t)

)
∈ {0; 1}t from the hash of the message, Salt,

commitments,
(
y(1), . . . ,y(t)

)
, and h, which has fixed Hamming weight w; set J as the support of

b, i.e., as the set of indices i for which b(i) = 1;

8. compute SeedPath as the ensemble of intermediate seeds in the SeedTree which are needed to
recompute all seeds Seed(i), for i ∈ J ;

9. set MerkleProof as the Merkle proof for leaves {c(i)0 }i ̸∈J ;

10. the signature is obtained as

Signature =
{
Salt, c, h, SeedPath, MerkleProof(T0), {y(i), σ(i), c

(i)
1 }i ̸∈J

}
.

Verification:

1. generate the first challenge
(
β(1), . . . , β(t)

)
from Msg, Salt, c;

2. generate the second challenge
(
b(1), . . . , b(t)

)
from Msg, Salt, c, β(1), . . . , β(t), and h;

3. using SeedPath, generate the seeds {Seeds(i)}i∈J ;

4. for i ∈ J , recompute c
(i)
1 , y(i), and h(i);

5. for i ̸∈ J , compute h(i) = Hash(y(i)), and c
(i)
1 ;

6. using MerkleProof and {c(i)0 }i ̸∈J , recompute c0;

7. compute c1 = Hash
(
c
(1)
1 , . . . , c

(t)
1

)
;

8. verify c = Hash
(
c0, c1

)
;

9. verify h = Hash
(
h(1), . . . , h(t)

)
.

Full details on how the signing and verification algorithm operate as given in Figures 6 and 7. We
have implicitly defined the functions to work with the seed tree (i.e., generate it from the root and
recover the path to generate some specific leaves in the base layer), as well as work with Merkle trees.
The functions GenCh1 and GenCh2 generate the challenges by hashing the input into a length-2λ digest,

with which a PRNG gets fed. The function GenCh1 has co-domain
(
F∗
p

)t
, while GenCh2 returns a random

vector over Ft
2 with Hamming weight w.

The public key size is
|pk| = (n− k)⌈log2(p)⌉+ 2λ.

The signature size is

|Signature| = 6λ︸︷︷︸
h, c, Salt

+λ(t− w) log2

(
t

t− w

)
︸ ︷︷ ︸

SeedPath

+ 2λ

(
1 + (t− w) log2

(
t

t− w

))
︸ ︷︷ ︸

MerkleProof

+

+ (t− w)

 2λ︸︷︷︸
c
(i)
1

+n⌈log2(p)⌉︸ ︷︷ ︸
y(i)

+m⌈log2(z)⌉︸ ︷︷ ︸
σ(i)


︸ ︷︷ ︸

f(i), i ̸∈ J

. (5)

When R-SDP is considered, m needs to be replaced with n.
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Private Key e ∈ G

Public Key G ⊆ En, H ∈ F(n−k)×n
p , s = eH⊤ ∈ Fn−k

p

Input Message Msg

Output Signature Signature

SIGNER VERIFIER

Sample MSeed
$←− {0; 1}λ, Salt

$←− {0; 1}2λ
Generate

(
Seed(1), . . . , Seed(t)

)
= SeedTree(MSeed, Salt)

For i = 1, . . . , t:

Sample (e′(i),u′(i))
Seed(i)←−−−− G× Fn

p

Compute σ(i) ∈ G such that σ(i)(e′(i)) = e
Set u(i) = σ(i)(u′(i))
Compute s̃(i) = u(i)H⊤

Set c
(i)
0 = Hash

(
s̃(i), σ(i), Salt, i

)
Set c

(i)
1 = Hash

(
u′(i), e′(i), Salt, i

)
Set T = MerkleTree

(
c
(1)
0 , . . . , c

(t)
0

)
Compute c0 = T .Root( )

Compute c1 = Hash
(
c
(1)
1 , . . . , c

(t)
1

)
Compute c = Hash

(
c0, c1

)
Generate

(
β(1), . . . , β(t)

)
= GenCh1

(
c, Msg, Salt

)
For i = 1, . . . , t:

Compute y(i) = u′(i) + β(i)e′(i)

Compute h(i) = Hash
(
y(i)

)
Compute h = Hash

(
h(1), . . . , h(t)

)
Generate

(
b(1), . . . , b(t)

)
= GenCh2

(
c, β(1), . . . , β(t), h, Msg, Salt

)
Set J =

{
i | b(i) = 1

}
Set SeedPath = SeedPath(MSeed, Salt, J)
For i ̸∈ J :

Set f (i) :=
(
y(i), σ(i), c

(i)
1

)
Compute MerkleProofs = T .Proofs({1, . . . , t} \ J)
Set Signature =

{
Salt, c, h, SeedPath, MerkleProofs, {f (i)}i̸∈J

}
Signature−−−−−−−−−−−−−−−−→

Figure 6: The CROSS signature scheme: signature generation
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Private Key e ∈ G

Public Key G ⊆ En, H ∈ F(n−k)×n
p , s = eH⊤ ∈ Fn−k

p

PROVER VERIFIER
Signature−−−−−−−−−−−−−−−−→

Generate
(
β(1), . . . , β(t)

)
= GenCh1

(
c, Msg, Salt

)
Generate

(
b(1), . . . , b(t)

)
= GenCh2

(
c, β(1), . . . , β(t), h, Msg, Salt

)
Set J =

{
i | b(i) = 1

}
Generate {Seed(i)}i∈J = GetSeeds(SeedPath, Salt)
For i ∈ J :

Sample (e′(i),u′(i))
Seed(i)←−−−− G× Fn

p

Set c
(i)
1 = Hash

(
u′(i), e′(i), Salt, i

)
Compute y(i) = u′(i) + β(i)e′(i)

Compute h(i) = Hash(y(i))

For i ̸∈ J :
Set h(i) = Hash

(
y(i)

)
Compute s̃(i) = σ(i)(y(i))H⊤ − β(i)s

Set c
(i)
0 = Hash

(
s̃(i), σ(i), Salt, i

)
Verify h = Hash

(
h(1), . . . , h(t)

)
Compute c1 = Hash

(
c
(1)
1 , . . . , c

(t)
1

)
Compute c0 = RecomputeMerkleRoot

(
{c(i)0 }i ̸∈J , MerkleProof

)
Verify c = Hash

(
c0, c1

)
Figure 7: The CROSS signature scheme: signature verification

5 Procedural Description of CROSS

In the following, we provide a procedural description of the CROSS signature scheme primitives: KeyGen,
Sign, and Verify. The latter two algorithms correspond to the realization of the signature generation
and verification protocols reported in Figure 6 and Figure 7, respectively, while the KeyGen describes
how the CROSS signature scheme keypair is generated.

The algorithmic triple presents minor procedural changes depending on whether the private key
being employed belongs to En (CROSS-R-SDP), or to a proper subgroup of En (CROSS-R-SDP(G)). We
report the algorithmic description with the following convention: portions in black are identical between
the two variants, portions in teal are unique to CROSS-R-SDP, while portions in orange are unique to
CROSS-R-SDP(G).

For efficiency in computation, we will represent, whenever possible, elements of En as length-n vec-
tors over Fz, and denote them with lowercase boldface Greek letters, e.g., η. The choice of lowercase
boldface Greek letters is made to avoid the lexical ambiguity which would arise between the syntax for a
procedure invocation and the ℓ(e) notation. The same representation will also be employed for restricted
transformations over elements of En, such as σ, for which we will adopt the same notation. This notation
is mutated by the fact that computing the application of σ to e ∈ En corresponds to an element-wise
multiplication over Fz of the components of their representations. Thus, we use σ in this section to
denote the previous ℓG(σ). For the case of R-SDP(G), we will represent the length m vectors in Fz with
lowercase Greek letters; we thus have, for instance, ℓG(e′(i)) = ζ̃.

To avoid ambiguity with the left-associative exponentiation operation, we move the round indexes,
wherever they are needed, from the round-brackets enclosed superscripts to the subscript of the symbol
they qualify, e.g., Seed(i) 7→ Seedi. We will also report all temporary variables not reused across rounds
without a subscript.

We will denote bit-strings employing a monospace font, while abstract data structures such as arrays
and portions of trees will be denoted with a sans serif font. When either a cell of an array or an element
of a vector must be singled out, we employ the usual square-bracket notation, and zero-based indexing;
e.g., v[3] represents the fourth element of the vector v. Table 1 summarizes the notation correspondence
between protocol and pseudocode.
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Table 1: Notation matches between protocol-level description and pseudocode

Protocol Pseudocode Semantics

ℓG(e) ζ vector in Fm
z for e

ℓ(e) η ζMG = ℓG(e)MG ∈ Fn
z for e

ℓG(σ(i)) δi vector in Fm
z for σ(i)

ℓ(e′(i)) η̃i vector in Fn
z for e′(i)

ℓ(σ(i)) σi vector in Fn
z for σ(i)

σ(i) v trans. on En, resp. G
u(i) u trans. u′(i)

s̃(i) s̃ syndrome of u(i)

c
(i)
0 cmt0[i] Commitment 0, round i

c
(i)
1 cmt1[i] Commitment 1, round i

c0 = T .root() d0 root of Merkle tree
T of commitment 0

c1 d1 Hash of commitment 1
d01 Hash of d0, d1
dm Hash of message
dβ Hash of dm,d01, Salt

(β(1), . . . , β(t)) beta first challenge
e′(i) ẽ trans. e
y(i) yi response to first challenge
h db Hash of y(1), . . . , y(t)

b(1), . . . , b(t) b second challenge
f (i) rsp0, rsp1 response in round i
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5.1 Key Generation

Algorithm 1: KeyGen()

Data: λ: security parameter,
g ∈ F∗

p: generator of a subgroup E of F∗
p with cardinality z

En: restricted subgroup
MG: m× n matrix of Fz elements, employed to generate vectors η ∈ G ⊂ En

Input: None
Output: pri : Seedsk: private key seed, 2λ bits long;

pub : (Seedpk, s) public key: Seedpk is a 2λ bit seed, to derive the non-systematic
portion of a random parity-check matrix H and the m× n matrix of Fz elements MG;
s ∈ Fn−k

p is the syndrome of e through H

1 Seedsk
$←− {0, 1}2λ

2 (Seede, Seedpk)← CSPRNG
(
Seedsk, {0, 1}2λ × {0, 1}2λ

)
3 (V,W)← CSPRNG

(
Seedpk,F(n−k)×k

p × Fm×(n−m)
z

)
V← CSPRNG

(
Seedpk,F(n−k)×k

p

)
4 H← [V |In−k]

5

MG ← [W | Im]

η ← CSPRNG (Seede,Fn
z )ζ ← CSPRNG (Seede,Fm

z )

η ← ζMG

6 for j ← 0 to n− 1 do
7 e[j]← gη[j]

8 end

9 s← eH⊤

10 pri← Seedsk
11 pub← (Seedpk, s)
12 return (pri,pub);

The first algorithm, KeyGen (Algorithm 1), has the task to generate uniformly at random a secret
key, which is comprised of a restricted vector e from a restricted subgroup G ⊆ En, and a public key,
which is comprised of the parity-check matrix H and the syndrome s = eH⊤. In the case of CROSS-
R-SDP(G), an additional matrix MG ∈ Fm×n

z , which has all the information for the subgroup G, is
required to generate the restricted vector e.

Through the following strategy, we reduce the amount of stored data in the private and public keys to
a single seed, and a seed plus the syndrome s, respectively. The keypair generation algorithm, KeyGen,
starts by drawing a 2λ bit seed from the systemwide TRNG and considers this as the Seedsk only key
material which is required to be stored as the private key (line 1) Employing a CSPRNG, Seedsk, the
private key seed is expanded into two different λ bit strings, Seede and Seedpk (line 2). Seedpk is
employed to generate, through the expansion via a CSPRNG, all the material pertaining to the public
matrix H, and for the case of CROSS-R-SDP(G)) the matrix MG (lines 3–5). To the end of minimizing
the pressure on the CSPRNG, only the nonsystematic portions of H and MG are expanded from the
CSPRNG (namely V and W).

Following the generation of H and MG, KeyGen computes the restricted error vector e in the
subgroup G expanding through a CSPRNG the Seede binary string (line 5). For CROSS-R-SDP, this is
done through a straightforward expansion of η = ℓ(e) from Seede. For CROSS-R-SDP(G), it is enough
to sample a random vector ζ = ℓG(e) ∈ Fm

z and compute η = ℓ(e) = ℓG(e)MG ∈ Fn
z . Then the restricted

error vector e in the subgroup G is obtained (lines 6-8) computing by

e = (gη[0], . . . gη[n−1]) = (gℓ(e)1 , . . . , gℓ(e)n) ∈ G.

Finally, once the value e is available the corresponding syndrome s through H is computed (line 9). The
public key is then constituted by the seed Seedpk required to sample V, W, and by the syndrome s. The
private key solely consists of the secret seed Seedsk, from which all the elements can be derived.
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5.2 Signature Generation

The Sign (Algorithm 2) procedure realizes operatively the signature protocol described in Figure 6,
receiving as inputs a private key pri and the message to be signed, represented as an arbitrary length
bit string Msg.

The first step in the signature procedure is to expand, starting from the secret seed, both the restricted
error vector e, the parity-check matrix H and, for the case of CROSS-R-SDP(G) only, the matrix MG

describing G. These operations are the same which are computed during the key generation algorithm
(Algorithm 1) in lines 1 to 5. Once the key material is expanded, the Sign procedure draws a λ bit string
Mseed, and a 2λ bit string Salt from the system TRNG (line 3). These strings are provided as input to
the procedure SeedTreeLeaves which computes a sequence of t seeds (Seed[0], . . . , Seed[t−1]), starting
from them (line 4). SeedTreeLeaves internally computes a binary tree of nodes, each containing a
binary string containing 3λ pseudorandom bits concatenated to an integer index of the tree node. The
index is determined by enumerating the nodes, level by level, starting from the root and proceeding
from left to right at each level. The 3λ pseudorandom bits of each child node are composed of the
output of a CSPRNG seeded with the binary string contained in its parent, concatenated with the 2λ
bit string Salt. The bit string of the root node is obtained concatenating the λ bit string Mseed, and a
2λ bit string Salt. The first t leaves starting from the left of the generated binary tree are returned by
SeedTreeLeaves as the sequence of t seeds (Seed[0], . . . , Seed[t− 1]).

The Sign (Algorithm 2) procedure then proceeds to the computation of the commitments for the
t rounds of the CROSS-ID identification protocol (lines 5–17), employing one of the generated seeds
per round. The purpose of the loop at lines (lines 5–17) is to compute the contents of the t-elements
sequences cmt0 and cmt1, representing the commitments for each CROSS-ID protocol iteration (these

correspond to the c
(j)
0 and c

(j)
1 values of the protocol level description, for 1 ≤ j ≤ t).

To do so, the i-th iteration of the loop expands Seed[i] concatenated with the 2λ bit string Salt and
the round index i, to sample a restricted error and a randomly drawn Fp vector. The restricted error is
represented as an n-element vector of the exponents of the subgroup E, and denoted as η′

i ∈ Fn
z at line 6.

The η′
i is used together with the secret error η (also represented as a vector of exponents in Fn

z ) to compute
a restricted transformation σi ∈ Fn

z , such that σi +η′
i = η (corresponding to ℓG(σi) + ℓG(e′i) = ℓG(e) in

the protocol level notation). This operatively amounts to a component-wise subtraction in Fn
z , as all the

operands are represented as n elements vectors of Fn
z (line 7). To apply the restricted transformation

sigma, the Sign procedure needs to convert its representation into a vector of n elements in Fp. This is
done by an element-wise computation of gσi[j], for all 0 ≤ j < n (lines 8–10) which yields the temporary
value v. The transformation, now represented as a Fp vector is applied to the previously randomly drawn
Fp vector u′

i. The application of the transformation is made via component-wise product on Fp (line 11).
Once this is completed, the syndrome s̃ of u = v⋆u′ through H is computed at line 12. The commitments
for the current round, i, are finally computed at lines 13 and 14. cmt0[i] is obtained as the hash digest
of the syndrome s̃, the transformation, the Salt and round number i (represented as byte aligned). In
computing cmt0[i] we leverage the possibility of compactly representing the transformation σi for the
CROSS-R-SDP(G) case. Indeed, thanks to the linearity of the computation of the multiplication by MG,
we can compute the value δi such that δiMG = σi, and replace σi with δi in the computation of cmt0[i].
This can be efficiently done right after the generation of η′

i in the CROSS-R-SDP(G) case (line 6), when
the values ζ and ζ′ (such that ζiMG = ηi and ζ′

iMG = ζ′
i) are available. Replacing σi with δi allows

to reduce the amount of data to be digested by hashes, in turn speeding up the computation of cmt0[i].
cmt1[i] is computed as the hash digest of the round seed Seed[i]and Salt.

Once all commitments are prepared, the algorithm proceeds to compute the digest to derive the
first challenge vector beta (β in the protocol level description, renamed to avoid ambiguities with the
semantics of greek lowercase letters). The canonical approach of the Fiat-Shamir transform, as described
in Figure 3, would obtain the digest which is employed to seed the CSPRNG generating beta through
the result of computing the hash of the concatenation of the message Msg, the Salt and all commitments
contained in the cmt0 and cmt1 commitment sequences. The Sign procedure optimizes this approach,
observing two facts. The first is that our fixed weight challenges have high weight (for the balanced and
small version) and therefore, the commitments in the cmt0, which are revealed when the binary challenge
has value 0, are seldom revealed. It is, therefore, useful to compute a Merkle tree (hierarchical) hash of
them alone to be able to reveal a less-than-linear (in t) amount of hashes in the signature. The Sign
procedure, therefore, computes the root of a Merkle tree d0 having cmt0 elements as leaves (line 16),
while it computes a simple hash of the elements of cmt1 obtaining the digest d1. In the canonical Fiat-
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Shamir approach, both d0 and d1 would be included in the signature to be recomputed by the verifier
and checked. We save one digest in signature size, computing the digest d01 employing as input d0 and
d1 (line 18) and including only d01 in the signature.

The second fact is that including the entire message in the hash input generating the seed which is
expanded into beta requires the entire message to be streamed into the computation unit performing
the signature. We, therefore, chose to include the digest of the message dm as the input, allowing the
parallel computation of it during the algorithm if more than a unit is available. We therefore compose
the input of the hash (line 20) yielding the digest dβ concatenating dm, d01, Salt.

Expanding dβ using a CSPRNG then yields the first challenge vector beta ∈ (F∗
p)t (line 21). Once

this is done, the Sign procedure computes the yi, 0 ≤ i < t, responses by computing the representation
over Fp of η′

i (lines 23–25), and subsequently obtaining yi as u′
i + beta[i]e′i.

For each round, the corresponding response yi is computed from the challenge beta[i], the restricted
error e′i, and u′

i.
The hash digest db obtained from hashing all the yi and dβ will then represent the first response and

is included in the signature, after which its expansion with a CSPRNG yields the second challenge vector
b (lines 31-32). The challenge vector b needs to be sampled from the set of binary strings of length t
and weight w. We observe that since the digest db is public, the constant weight sampling process does
not need to be implemented through a constant time algorithm. This, in turn, reduces the difficulty of
obtaining both a correct and secure algorithm. Since the number of zeroes in b is by far smaller than
the number of ones, we sample the positions of the zeroes in the string through extracting from the
CSPRNG fed with db numbers in the {0, n − 1} range. If a drawn position already contains a zero, we
discard the sampled number and sample a fresh one.

Once the b fixed weight challenge string is available, it is possible to compute which nodes of the
Merkle tree should be included in the signature so that the verifier is able to recompute the d0 value start-
ing from them and the responses to a zero-valued challenge. This is performed by the MerkleProof
procedure (line 33), which takes the fixed-weight b vector as an input, together with the commitment
sequence cmt0. The procedure includes in the MerkleProofs data structure all the nodes of the Merkle
tree, which are roots of the highest subtrees, such that they do not contain a leaf recomputable by the
verifier.

The Sign procedure then computes the second set of protocol responses. Our optimized approach
represents the responses to a zero-valued challenge bit explicitly, keeping them in the sequences rsp0
and rsp1. By contrast, since the responses to one-valued challenge bits can be represented in a compact
fashion by the seed employed in lines 5–15, we compactly represent all of them as roots of binary subtrees
of the seed tree data structure. Indeed, the SeedTreePaths procedure (called at line 34) takes as an
input the master seed Mseed allowing to generate the seed tree and a bitset representing which leaves
(indeed, seeds) are to be disclosed to the verifier. The SeedTreePaths determines the nodes to be
included in the SeedPaths data structure picking all the roots of subtrees of the binary tree such that
their descendants are uniquely nodes to be disclosed.

The Sign procedure moves onto filling the rsp0 and rsp1 sequences, both having length t − w. In
particular, the loop at lines 38–44 iterates on the CROSS-ID protocol repetitions (indexed by i) and,
for all rounds where the binary challenge is zero-valued (lines 39–43) it includes in the rsp0 sequence
the yi vector and a compact representation of the restricted transformation (σi for CROSS-R-SDP, δ
for CROSS-R-SDP(G)), while storing in the rsp1 sequence the corresponding commit from the and cmt1
sequence.

Finally, the signature Signature is composed concatenating and encoding in a compact fashion
(described in Section 9, Packing and Unpacking) the following elements: 2λ-bit Salt, the hash digest of
the commitments d01, the hash digest of the first responses db, the Merkle tree proof MerkleProofs of the
cmt0[i] for challenge bits b[i] = 0, the seed tree path SeedPath for the rounds in which b[i] = 1, and the
response vectors rsp0 and rsp1.
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Algorithm 2: Sign(pri, Msg)

Data: λ: security parameter,
g ∈ F∗

p: generator of a subgroup E of F∗
p with cardinality z

En: restricted subgroup
MG: m× n matrix of Zz elements, employed to generate vectors η ∈ G ⊂ En

t: number of iterations of the ZKID protocol
Btw: set of all binary strings with length w and Hamming weight t

Input: pri: private key constituted of Seedsk ∈ {0, 1}2λ
Msg: message to be signed Msg ∈ {0, 1}∗

Output: Signature Signature

1 Begin

// Key material expansion

2 η, ζ,H,MG ← ExpandPrivateSeed(Seedsk) η,H← ExpandPrivateSeed(Seedsk)

// Computation of commitments

3 Mseed
$←− {0, 1}λ, Salt

$←− {0, 1}2λ
4 (Seed[0], . . . , Seed[t− 1])← SeedTreeLeaves(Mseed, Salt)
5 for i← 0 to t− 1 do

6

ζ′,u′
i ← CSPRNG

(
Seed[i]||Salt||i,Fm

z × Fn
p

)
η′
i,u

′
i ← CSPRNG

(
Seed[i]||Salt||i,Fn

z × Fn
p

)
δi ← ζ − ζ′

η′
i ← ζ′MG

7 σi ← η − η′
i

8 for j ← 0 to n− 1 do
9 v[j]← gσi[j]

10 end
11 u← v ⋆ u′

i // ⋆ is component-wise product

12 s̃← uH⊤

13 cmt0[i]← Hash(s̃||δi||Salt||i) cmt0[i]← Hash(s̃||σi||Salt||i)
14 cmt1[i]← Hash(Seed[i]||Salt||i)
15 end
16 d0 ←MerkleRoot(cmt0[0], . . . , cmt0[t− 1])
17 d1 ← Hash(cmt1[0] || . . . || cmt1[t− 1])
18 d01 ← Hash(d0 || d1)

// First challenge vector extraction

19 dm ← Hash(Msg)
20 dβ ← Hash(dm||d01||Salt)

21 beta← CSPRNG
(
dβ , (F∗

p)t
)

// Computation of first round of responses

22 for i← 0 to t− 1 do
23 for j ← 0 to n− 1 do

24 e′[j]← gη
′
i[j]

25 end
26 yi ← u′

i + beta[i]e′i
27 end
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30

// Second challenge vector extraction

31 db ← Hash(y0|| . . . ||yt−1||dβ)

32 b← CSPRNG
(
db,Bt(w)

)
// Computation of second round of responses

33 MerkleProofs←MerkleProof((cmt0[0], . . . , cmt0[t− 1]),b)
34 SeedPath← SeedTreePaths(Mseed,b)

// Signature composition

35 rsp0 ← (Fn
p × Fm

z )t−w rsp0 ← (Fn
p × Fn

z )t−w

36 rsp1 ← ({0, 1}λ)t−w // empty array

37 j ← 0
38 for i← 0 to t− 1 do
39 if (b[i] = 0) then

// cmt0[i] is recomputed by the verifier, cmt1[i] must be sent

40 rsp0[j]← (yi, δi) rsp0[j]← (yi,σi)

41 rsp1[j]← cmt1[i]
42 j ← j + 1

43 end

44 end

45 Signature← Salt || d01 || db || MerkleProofs || SeedPath || rsp0 || rsp1
// all Signature components are encoded as binary strings

46 return Signature

47 end

5.3 Signature Verification

The Verify procedure implements the verification procedure described in Figure 7. The procedure
takes as input the public key pub, the message on which the signature should be verified Msg and the
Signature. The procedure outputs a single Boolean value, True or False, depending on whether the
signature is valid or not.

The first step of the signature verification procedure is the expansion of the seed contained in the
public key, Seedpk into the parity-check matrix H, and, for CROSS-R-SDP(G), the matrix MG (lines
2-4). Once the key material is available, the procedure moves onto the recomputation of the challenge
vectors beta and b. To this end, b is recomputed through the same CSPRNG technique employed to
generate it during the signature operation, seeding the CSPRNG with db (line 8). The input to the
CSPRNG dβ (line 7) required to generate beta is obtained hashing the concatenation of the message
digest dm (obtained at line 6) with the commitments digest d01 and the Salt contained in the signature.

The Verify procedure then regenerates the seeds required to recompute the values of cmt1[i] for all
the protocol iterations i where the binary challenge vector b has value 1 (line 9). This is performed by the
RebuildSeedTreeLeaves procedure, which takes the SeedPath data structure, the challenge vector b
and the Salt. The procedure computes, starting from the information contained in b the roots of the
highest subtrees containing only leaves to be regenerated, and places the nodes contained in SeedPath
into them. It subsequently computes, top-down, all the required leaves. Having generated the sequence
(Seed[0], . . . , Seed[t− 1]), for which only revealed seeds contain valid values, the Verify procedure now
computes the values in the cmt0 and cmt1, sequences, as well as the values yi of the first responses,
depending on the challenge bit b[i] (lines 10 - 31).

If b[i] = 1 (lines 12-19), the Verify procedure re-computes the value of cmt1[i] by hashing Seed[i]
with the Salt (line 13). Subsequently, the procedure expands Seed[i], obtained as a leaf of the seed
tree, to recompute the e′ vector (line 14 –17), performing the same expansion via CSPRNG done by
the signature procedure, depending on the CROSS variant (random sampling plus translation from
the exponent representation into the vector-over-Fp one). Similarly, the value of u′ is recovered from a
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CSPRNG expansion. Finally, Verify computes the values of the first response yi using the reconstructed
first challenge beta[i] and e′,u′ (line 18).

If b[i] = 0, the Verify procedure re-computes the value of cmt0[i]. Therefore, it is first verified that
the transformation contained in rsp0, represented as n elements of Fz in σ for CROSS-R-SDP, or as m
elements of Fz in δ for CROSS-R-SDP(G), is a valid element of the restricted subgroup G, checking if
all the values in the encoded vector of either σ or δ are are in the appropriate range {0, . . . , z − 1} (line
21), and if needed, reconstructing σ from δ via a multiplication by MG. If so, the transformation is
applied to the provided yi, which is afterward used to compute the syndrome s̃ (lines 25–26). Hashing
the syndrome s̃, the transformation (σ or δ) and the Salt yields the digest of cmt0[i] (line 27). The
corresponding value of the digest of cmt1[i] is copied from the rsp1 sequence (line 28).

The Verify procedure is now able to recompute the digests d0 and d1 (lines 32-33): we denote the
recomputed values as d′0 and d′1. The digest d′0 is obtained via the RecomputeMerkleRoot procedure,
which receives the sequence of commitments cmt0, where part of them were recomputed and part of them
received as the MerkleProofs data structure in the signature. The procedure performs a hierarchical hash
of the said commitments, obtaining d′0 (line 32). The d′1 digest is obtained performing a hash of the
cmt1 sequence (line 33). Finally, d′0 and d′1 are employed as the inputs to a hash call, to obtain d′01
(line 36), which, provided that the signature is valid, should be matching its counterpart d01 contained
in the signature itself. The last computation performed by the Verify procedure is the recomputation
of the digest db (line 37), (we denote the variable holding the recomputed value d′b) obtained hashing
together both the receive yi as part of the rsp0 sequence, and the ones which were computed at line 18,
in increasing order of the value of i. The Verify procedure determines whether both d′01 matches d01
and d′b matches db (line 38): if this is the case, the signature is valid and Verify returns True, otherwise
it returns False.
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Algorithm 3: CROSS-verify(pub, Msg, Signature)

Data: λ: security parameter,
g ∈ F∗

p: generator of a subgroup E of F∗
p with cardinality z

En: restricted subgroup
MG: m× n matrix of Fz elements, employed to generate vectors η ∈ G ⊂ En

t: number of iterations of the ZKID protocol
Btw: set of all binary strings with length w and Hamming weight t

Input: pub: (Seedpk, s) public key: Seedpk is a 2λ bit seed to derive the non-systematic portion
of a random parity-check matrix H and the m× n matrix of Fz elements MG

Msg: message to verify the signature on; Msg ∈ {0, 1}∗
Signature: signature obtained encoding as binary the tuple
(Salt, d01, db,MerkleProofs,SeedPath, rsp0, rsp1)

Output: a Boolean value, {True, False}, indicating if the signature is verified or not

1 Begin
// Key material expansion

2 (V,W)← CSPRNG
(
Seedpk,F(n−k)×k

p × Fm×(n−m)
z

)
V← CSPRNG

(
Seedpk,F(n−k)×k

p

)
3 H← [V | In−k]
4 MG ← [W | Im]

// Challenge recomputation

5 dm ← Hash(Msg)
6 dβ ← Hash(dm||d01||Salt)

7 beta← CSPRNG
(
dβ , (F∗

p)t
)

8 b← CSPRNG (db,Btw)

9 (Seed[0], . . . , Seed[t− 1])← RebuildSeedTreeLeaves(SeedPath,b, Salt)
10 j ← 0
11 for i← 0 to t− 1 do
12 if (b[i] = 1) then
13 cmt1[i]← Hash(Seed[i]||Salt||i)

14
ζ′,u′

i ← CSPRNG
(
Seed[i]||Salt||i,Fm

z × Fn
p

)
η′,u′

i ← CSPRNG
(
Seed[i]||Salt||i,Fn

z × Fn
p

)
η′ ← ζ′MG

15 for j ← 0 to n− 1 do

16 e′[j]← gη
′[j]

17 end
18 yi ← u′ + beta[i]e′

19 end
20 else

21

(yi, δi)← rsp0[j] (yi,σi)← rsp0[j]

verify δi ∈ G
verify σi ∈ G

σi ← δMG

22 for j ← 0 to n− 1 do
23 v[j]← gσ[j]

24 end
25 y′ ← v ⋆ yi

26 s̃← y′H⊤ − beta[i]s

27 cmt0[i]← Hash(s̃||δi||Salt||i) cmt0[i]← Hash(s̃||σi||Salt||i)
28 cmt1[i]← rsp1[j]
29 j ← j + 1

30 end

31 end
32 d′0 ← RecomputeMerkleRoot(cmt0,MerkleProofs,b)
33 d′1 ← Hash(cmt1[0] || . . . || cmt1[t− 1])
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35

36 d′01 ← Hash(d′0 || d′1)
37 d′b ← Hash(y0|| . . . ||yt−1)

38 if (d01 = d′01 and db = d′b) then
39 return True

40 end
41 return False

42 end

Note that the values of σ, published in the signature and hashed, are in redundant-double zero
representation for efficiency reasons. No loss in signature size takes place. Furthermore, whenever
vectors over Fp or Fz are used as inputs to hash functions in Algorithm 2 and Algorithm 3, we represent
them in their bit-packed form to reduce pressure on the hash function.

6 Design Rationale

This section explains the design rationale behind CROSS. We address each choice we make for the
signature scheme.

Code-Based. Within the NIST quantum-resistant standardization process, three digital signature
schemes are already chosen for standardization: CRYSTALS-Dilithium, FALCON, and SPHINCS+. As
these schemes are hash-based and lattice-based, it is preferable to have also signature schemes based
on other hard problems. Seeing the recent breaks in multivariate and isogeny-based cryptography, it
seems prudent to standardize several signature schemes relying on different primitives. Hard problems
from coding theory, such as syndrome decoding and codeword finding for random codes, have worst-
case hardness guarantees, coming from the NP-completeness proof in [14, 10]. Furthermore, despite a
significant amount of research effort devoted to the task, no subexponential solver, neither classical nor
quantum, is available for such problems [50]. The decoding problem for restricted error vectors has also
been proven to be NP-hard [53], and the best-known decoders [23, 8] show an even larger computational
complexity than for the classical decoding problem.

Zero-Knowledge Protocol. Leveraging the Fiat-Shamir transform on a ZK protocol gives the signa-
ture scheme high-security guarantees. We can provide an EUF-CMA security proof of CROSS, and the
long history of classical code-based ZK protocols establishes them as safe solutions for modern signature
schemes.

Restricted Errors. Standard code-based ZK protocols rely on the hardness of the Hamming-metric
decoding problem. However, their ZK protocols suffer from large communication costs. The bulk of this
comes from having to communicate permutations. The introduction of restricted errors to ZK protocols
allows us to circumvent the need for costly permutations while at the same time maintaining the NP-
hardness of the underlying problem [53]. Additionally, the restriction allows us to represent the restricted
vectors and their transformations compactly.

Choice of E. One could also use a different restriction on the entries of the error vector. However,
to reduce the communication cost within the ZK protocol (and therefore also the signature size of the
resulting signature scheme), the particular form of E is crucial. Having that each entry of a restricted
vector is given by gℓ, it is enough to send ℓ. In other words, we are exploiting the fact that (En, ⋆)
is isomorphic to (Fn

z ,+). Having that the group (En, ⋆) is transitive allows us to represent also the
transformations in a compact way; in fact, this form of communication requires only n log2(z) bits.

Choice of G. Since the syndrome equations are linear under addition, having a multiplicative subgroup
of En will not harm the security of the underlying problem. To consider the subgroup (G, ⋆) ⊂ (En, ⋆) al-
lows us to further reduce the signature sizes, as any vector e (and thus also its associated transformations)
can be represented using only m log2(z) bits.

Choice of CROSS-ID. There are already several code-based ZK protocols, though these rely on the
Hamming-metric syndrome decoding problem. One can replace this problem with the R-SDP in each
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ZK protocol and reduce the signature sizes significantly. For example, using the Hamming-metric SDP
in GPS [37] requires a signature of size 24 kB to attain a security level of 128 bits. The corresponding
R-SDP version requires only 14 kB signature sizes; R-SDP(G) needs just 12 kB, half the size for the
same security.

We have considered several such ZK protocols and analyzed the performance of their R-SDP variants
in terms of signature sizes, which are the main bottleneck of code-based signature schemes stemming
from ZK protocols. We have found that the CROSS-ID protocol attains the best performance. This
is mainly due to the large number of hashes required in GPS [37] and BG [19], which seem to be the
bottleneck for computational efficiency.

Choice of Ambient Space. The R-SDP and the ZK protocols can easily be formulated over a general
finite field Fq, where q is a prime power. However, we restrict ourselves to prime fields to thwart possible
vulnerabilities concerning subfield attacks [44].

7 Security

This section provides a thorough security analysis of CROSS.

• We provide the EUF-CMA security proof in Theorem 8. This is derived from [41], and the properties
of the underlying ZK protocol, i.e., (2,2)-special-soundness and being a q2-Identification scheme.

• The hardness of the underlying problem is shown in Theorem 3. R-SDP is relatively new but closely
related to the classical syndrome decoding problem and the subset sum problem, which have been
studied extensively [40]. This allows us to tailor the best-known solvers of the related problems
to our new setting. In Section 7.1 we give a conservative estimate of the time complexity of these
algorithms. The estimation scripts are available at https://www.cross-crypto.com/resources.

• In Section 7.2 we discuss the possibility of solving R-SDP by Gröbner bases. These algebraic
attacks are inferior to the combinatorial ones discussed in Section 7.1.

• We provide forgery attacks in Section 7.3.1 on weighted challenges by adapting the attack in [43].

• Finally, in Section 8, we show that the chosen set of parameters attains the claimed security levels,
reporting the finite-regime security estimates.

7.1 Hardness of Underlying Problem and Generic Solvers

The fastest known generic solvers for the syndrome decoding problem in the Hamming metric are Infor-
mation Set Decoding (ISD) algorithms [48, 28, 16, 13]. The best-known algorithms for the subset sum
problem are introduced in [40, 12]. These solvers have been adapted to R-SDP in [23] for the particular
case of z ∈ {2, 4, 6} and in [8] for arbitrary values of z. These works have shown that the cost of solving
the R-SDP depends on the particular structure of E and have identified weaker instances, such as small
z, or even z.

We will quickly recall here the main points and which structures of E should be avoided. Indeed,
several choices can lead to a somewhat easier problem. For instance, in an extension field Fpm for some
prime p and integer m, there are several choices of E where one can consider solving a simpler problem:
E = Fp is an obvious example. More generally, picking E contained in a relatively small subfield can lead
to the vulnerability from [44]. To avoid this possibility, we restrict our consideration to prime fields.

As another suboptimal choice, one can choose rather large values for p and E = {0, 1}. Thus, solvers
for subset sum problems may be used [12], where one adds some elements to the search space. To
circumvent possible speedups from such techniques, we restrict ourselves to error sets E of relatively
large size.

We have therefore excluded these weaker instances and analyzed the decoding cost for our two in-
stances:

1. R-SDP with p = 127, z = 7,

2. R-SDP(G) with p = 509 and z = 127.

We will quickly recall the famous Stern/Dumer algorithm and elaborate more on the representation
technique approach (adapted from [13]) using larger search spaces (as in [12]) since this algorithm depends
heavily on the additive structure of the chosen E.
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7.1.1 Generic Solvers for the R-SDP

To estimate the R-SDP’s complexity, we provide combinatorial solvers based on the fastest known algo-
rithms for solving the classical syndrome decoding problem [48, 13] and hard knapsacks [40, 12].

Let us quickly recall the partial Gaussian elimination step [35], which is used in all modern ISD

algorithms. Given the parity-check matrix H ∈ F(n−k)×n
p , an information set I is chosen and H is

brought into quasi-systematic form. For this, let I ′ be a set of size k + ℓ, which contains the information
set I and transform H as

UHP = H̃ =

(
In−k−ℓ H1

0 H2

)
,

where U ∈ F(n−k)×(n−k)
p is an invertible matrix and P ∈ Fn×n

p is a permutation matrix. This inherently

splits the unknown error vector e into the positions indexed by I ′ and (I ′)C , i.e., eP⊤ = (e1, e2). Thus,
we get the system of two equations

e1 + e2H
⊤
1 = s1 and

e2H
⊤
2 = s2,

where e1, e2 are full-weight vectors with entries in E of length n − (k + ℓ) and k + ℓ. To solve the
system, one enumerates solutions e2 of the second equation e2H

⊤
2 = s2 and checks for each one if the

remaining e1 = s1 − e2H
⊤
1 completes it to a valid, i.e., restricted, solution. In the following, we discuss

two advanced methods for the enumeration of e2.

Algorithm based on Collision Search We start with an algorithm that uses a meet-in-the-middle
strategy to enumerate the solutions. This approach was applied to hard knapsacks by Horowitz and Sahni
[39] and adopted for the syndrome decoding problem by Stern and Dumer [48, 28]. For the adaption to
R-SDP, to which we refer to as Stern/Dumer, we define the lists

L :=
{

(x1, (x1, 0)H⊤
2 ) | x1 ∈ E⌊

k+ℓ
2 ⌋

}
and

L′ :=
{

(x2, s2 − (0, x2)H⊤
2 ) | x2 ∈ E⌈

k+ℓ
2 ⌉

}
,

which contain |L| = z⌊
k+ℓ
2 ⌋ and |L′| = z⌈

k+ℓ
2 ⌉ elements, respectively. One uses a collision search to find

suitable e2 = (x1,x2) and extends them to solutions of the complete problem, as discussed in the partial
Gaussian elimination step.

Theorem 9. The discussed collision-based solver Stern/Dumer, which is tailored to full-weight R-SDP,
uses MStern(p, n, k, z) bits of memory, which can be lower-bounded as

MStern(p, n, k, z) ≥ |L| ·
⌊
k + ℓ

2

⌋
· log2(z).

The number of binary operations of the collision-based algorithm tailored to full-weight R-SDP can be
bounded from below as

CStern(p, n, k, z) ≥ min
0≤ℓ≤n−k

C + C ′ + Ccoll

1 + znpk−n
log2(MStern(p, n, k, z)),

where C, C ′ and Ccoll are bounded as

C ≥ |L| ·
(⌊

k+ℓ
2

⌋
· log2(z) + ℓ · log2(p)

)
,

C ′ ≥ |L′| ·
(⌈

k+ℓ
2

⌉
· log2(z) + ℓ · log2(p)

)
,

Ccoll ≥ |L| · |L′| · p−ℓ · (k + ℓ) log2(p).

Proof. To perform the collision search, the algorithm has to store the smaller list among L and L′. Since
this list contains dense vectors of length

⌊
k+ℓ
2

⌋
with entries in E, at least

⌊
k+ℓ
2

⌋
log2(z) bits are required

per list element. This gives the bound on the memory cost MStern(p, n, k, z).
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Let us consider the algorithm’s time complexity CStern(p, n, k, z). As usual, the complexity of finding
any solution is given by the cost of finding a particular one divided by the number of solutions. Here,
the average number of solutions is tightly upper-bounded as 1 + znpk−n.

When enumerating the solutions of the small instance, one must first store the error vectors x1

associated with list L in positions depending on the corresponding syndrome x1H
⊤
1 . The error vectors

have a size of k+ℓ
2 · log2(z) bits and the syndromes a size of ℓ · log2(p) bits. Hence, this requires at least

|L| ·
(⌊

k+ℓ
2

⌋
· log2(z) + ℓ · log2(p)

)
binary operations.

Next, the syndromes s2−x2H
⊤
2 of the error vectors x2 associated with list L′ are calculated. Again,

due to the size of the objects, this requires at least |L′|
(⌈

k+ℓ
2

⌉
· log2(z) + ℓ · log2(p)

)
binary operations.

Solutions e2 of the small instance are obtained by performing a collision search, i.e., x1H
⊤
1 = s2 −

x2H
⊤
2 . On average, |L|·|L′| ·p−ℓ collisions are found. For each collision, one checks whether e2 = (x1,x2)

extends to a solution e to the complete problem. For this, one has to calculate at least one syndrome
symbol of the complete instance, which is the sum of k + ℓ elements of Fp. Hence, this step requires at
least |L| · |L′| · p−ℓ · (k + ℓ) log2(p) binary operations.

Finally, the memory access cost is modeled with the conservative logarithmic cost model [29, 6], that
is, the cost per iteration is increased by a factor log2(MStern(p, n, k, z)).

Algorithm based on the Representation Technique We now analyze a more elaborate multi-level
algorithm inspired by [40, 12, 13, 38]. This algorithm uses representations from a sum partition instead
of the above set partition. That is one writes the solution to the smaller instance e2 = e(1) + e(2), where
e(1) and e(2) are suitably chosen vectors of length k + ℓ, the supports of which may overlap. Then, there
are multiple pairs (e(1), e(2)), which follow a chosen distribution and sum to e2. Since it is sufficient to
obtain a single copy of e2 to solve the problem, it is sufficient to enumerate only a fraction of all possible
pairs (e(1), e(2)).

For this section, we introduce the notation E0 to denote E ∪ {0}.
To minimize the number of vectors that must be enumerated and, hence, the computational com-

plexity, we tailor the representation technique to the restricted case. That is, we do not only construct
lists with e(i) ∈ Ek+ℓ

0 , but in (E0 ∪ D)
k+ℓ

, where D ⊆ {a − b | a, b ∈ E} is a carefully chosen set, which
allows for an increased number of representations. We denote by zD the size of the chosen D.

To determine the number of representations of an error vector as a sum of vectors in (E0 ∪ D)k+ℓ,
we quantify the additive structure of E and D in the following. For this, we determine the number of
possibilities to write an element a ∈ E as b + c with b, c ∈ E and the number of possibilities to write it
as b + c′ with b ∈ E, c′ ∈ D. These quantities are denoted by

αE(a) := |{b ∈ E | ∃c ∈ E : b + c = a}|,
αD(a) := |{b ∈ E | ∃c ∈ D : b + c = a}|.

Since for our choice of E these quantities do not depend on the choice of a ∈ E, we simply write αE,
respectively αD.

Example 10. For g = 2 of order z = 7 in F127, we have E = {1, 2, 4, 8, 16, 32, 64} and αE = 1, since for
any 2i ∈ E it holds that 2i−1 ∈ E (and 2i−1 + 2i−1 = 2i). Further, we pick

D = {a− b | a, b ∈ E} \ E0 = {2i1 − 2i1+i2 | i1 ∈ {0, . . . , 6}, i2 ∈ {1, . . . , 5}},

which contains zD = 35 elements. For any element 2i ∈ E there exists five elements c ∈ D such that
c + 2i ∈ E, thus αD = 5. More generally, for the chosen p, z, there is a D̃ of size zD̃ = z · s with
a ∈ {1, . . . , 5} such that αD̃ = s.

We have introduced all preliminaries for counting the number of representations, which is given in
the following lemma.

Lemma 11. Let e ∈ (E0 ∪ D)k+ℓ have vi entries from E and di entries from D. Further, we let
νi+1 = vi+1 − vi

2 and δi+1 = di+1 − di

2 . Then, there are

r =

(
vi

vi+1

)(
vi+1

2νi+1

)
α
2νi+1

E ·
(
vi/2− νi+1

δi+1

)2

· α2δi+1

D

(
di
di/2

)
possibilities for picking e(1), e(2) ∈ (E0∪D)k+ℓ such that e(1), e(2) each have vi+1 entries in E, di+1 entries
in D, and e(1) + e(2) = e.
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Figure 8: Counting the number of representations on level i.

Proof. The counting of the number of representations is depicted in Figure 8. For the vi entries of e
living in E, we choose vi+1 = vi/2 + νi+1 entries in e(1) and distribute inside these vi+1 entries the 2νi+1

overlaps with entries of e(2) in E. By definition, there are α
2νi+1

E ways of choosing the 2νi+1 entries.
Then, out of the non-selected vi− vi+1 entries of e in E, we choose δi+1 many entries of e(1) for overlaps
with entries in e(2). This step is repeated for e(2), since there is also the same choice for e(2) to overlap

with entries of e(1) in E. By definition, there are again α
2δi+1

D choices for these entries. Finally, we split
the di entries of e living in D into di/2 entries of e(1) living in D, which then also fixes the remaining
di/2 entries of e(2) in D.

We now describe how the multi-level algorithm proceeds in the case of four levels. We also tried
more levels, however, increasing the number of levels further did not yield an improved finite regime
performance. On level i, the solver uses list with vi elements from E and di elements from D. The
compositions of the levels are connected via

v0 = k + ℓ, v1 = v0/2 + ν1, v2 = v1/2 + ν2, v3 = v2/2,
d0 = 0, d1 = d0/2 + δ1, d2 = d1/2 + δ2, d3 = d2/2,

where ℓ, ν1, ν2, δ1 and δ2 are internal parameters which can be optimized. The parameter ℓ denotes the
redundancy of the small instance due to the partial Gaussian elimination, and νi and δi correspond to
the “overlapping” number of entries in E, respectively in D on level i.

Then, according to Lemma 11, the number of representations for level 1, i.e., r1, and the number of
representation for level 0, i.e., r0, are given by

r1 =

(
v1
v2

)(
v2
2ν2

)
α2ν2

E

(
v1 − v2

δ2

)2

α2δ2
D

(
d1

d1/2

)
,

r0 =

(
v0
v1

)(
v1
2ν1

)
α2ν1

E

(
v0 − v1

δ1

)2

α2δ1
D .

• On the third and last level, the algorithm prepares the base lists L3. The elements of the base lists
are vectors of length k+ℓ

2 which contain v3 elements of E and d3 elements of D. The base lists have
the same size, being

L3 =

(
(k + ℓ)/2

v3, d3

)
zv3zd3

D ,

where
(
(k+ℓ)/2
v3,d3

)
=

(
(k+ℓ)/2
v3+d3

)
·
(
v3+d3

v3

)
denotes the trinomial coefficient.

• On the second level, two base lists are merged into a list by performing a concatenation merge on
ℓ1 symbols. We refer to the resulting list as L2, which contains vectors of length k + ℓ with v2
elements of E and d2 elements of D. The lists L2 have sizes

L2 =

(
k + ℓ

v2, d2

)
zv2zd2

D p−ℓ1 ,

where ℓ1 = logp(r1) guarantees that one representation of the final solution in L2 survives the
merge on average.
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• On the first level, the algorithm creates lists by performing a representation merge of two level-2
lists on ℓ0 syndrome symbols. We refer to the resulting list as L1, which contains vectors of length
k + ℓ with v1 elements of E and d1 elements of D. The lists L1 have size

L1 =

(
k + ℓ

v1, d1

)
zv1zd1

D p−ℓ0−ℓ1 ,

where ℓ0 = logp(r0)− ℓ1 guarantees that one representation of the final solution in L1 survives the
merge on average.

• On level 0, a final representation merge on the remaining ℓ − ℓ1 − ℓ0 syndrome symbols gives a
solution of the small instance, i.e., vectors e2 of length k + ℓ with entries solely from E that satisfy
e2H

⊤
2 = s2.

Theorem 12. The discussed representation-based solver BJMM tailored to R-SDP uses MBJMM(p, n, k, z)
bits of memory, which can be lower-bounded as

MBJMM(p, n, k, z) ≥ max
i∈{3,2,1}

{Li(vi log2(z) + di log2(zD))} .

The computational complexity of the algorithm can be bounded from below as

CBJMM(p, n, k, z) = min
ℓ,ν1,ν2,δ1,δ2

{
C3 + C2 + C1 + C0

1 + znpk−n
log2(MBJMM(p, n, k, z))

}
,

where Ci denotes the cost associated with level i, which are given as

C3 ≥ 2 · L3(ℓ1 log2(p) + v3 log2(z) + d3 log2(zD)),

C2 ≥ 2 · L2(ℓ0 log2(p) + v2 log2(z) + d2 log2(zD)),

C1 ≥ 2 · L2
2p

−ℓ0 log2(p),

C0 ≥ L2
1p

−(ℓ−ℓ0−ℓ1) log2(p).

Proof. To perform the collision search, the BJMM algorithm has to store at least one of the lists on levels
3, 2 and 1. Note that the final list does not require to be stored since as soon as we have found a solution
to the smaller instance, we can check if it expands to a solution to the original problem. Therefore, the
memory cost of the solver can be lower-bounded by the minimum size of these lists. On level 3, i.e., for
the base lists L3, each element requires at least (v3 log2(z) + d3 log2(zD)) bits of memory. Similarly, each
element of L2 requires at least (v2 log2(z) + d2 log2(zD)) bits, and each element of L1 requires at least
(v1 log2(z) + d1 log2(zD)) bits. This gives the bound on the memory cost MBJMM(p, n, k, z).

Let us now consider the time complexity of the BJMM algorithm.
One begins on the third level by constructing base lists L3. Similar to Stern/Dumer, one has to

construct at least two such lists to be able to perform the first concatenation merge. For each element,
which has size of at least (v3 log2(z) +d3 log2(zD)) bits, one calculates as a partial syndrome in Fℓ1

p . This
gives the lower bound on the cost C3.

On the second, level one performs the concatenation merge, which on average results in |L2| =
|L3|2p−ℓ1 collisions. For each collision, one obtains an error vector, which has the size of at least
(v2 log2(z) + d2 log2(zD)) bits, and calculates a partial syndrome in Fℓ0

p . Again, this step has to be
performed at least twice to continue to lower levels. Hence, we obtain the bound on C2.

On the first level, one performs a representation merge between lists L2 on the small instance ℓ0
syndrome symbols. This representation merge yields on average |L2|2pℓ0 collisions. Taking into account
early abort techniques [16], we conservatively estimate the cost per collision as a single field addition:
at least one element of the error vectors has to be added to determine whether the sum of the vectors
can be a well-formed solution, i.e., a restricted vector. Considering that this step needs to be performed
twice, we obtain the lower bound on C1.

One performs a final representation merge between two lists of level 1 on the remaining ℓ − ℓ0 − ℓ1
syndrome symbols of the small instance, to find solutions for the small instance. This representation
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merge yields on average |L1|2p−(ℓ−ℓ0−ℓ1) collisions. Again, we conservatively estimate the cost per
collision as a single field addition.

Finally, the memory access cost is modeled with the conservative logarithmic cost model [29, 6], that
is, the cost per iteration is increased by a factor log2(MBJMM(p, n, k, z)).

Shifting E One can modify the R-SDP instance to be solved. For this, the restricted error vector
e ∈ En is shifted by a vector x ∈ Fn

p . Since the syndrome sx of x through H is known, the problem now

becomes to find (e+ x)H⊤ = s+ sx. For solvers, the case of x = (−x, . . . ,−x) with x ∈ E is of interest,
as this introduces more zeroes in the new solution. Hence, we consider this variant in the following. Let
us denote E shifted into direction x ∈ E as

Ex := {a− x | a ∈ E} \ {0}.

Then, after shifting by x = (−x, . . . ,−x), the modified R-SDP instance asks to find the vector ẽ =
e + x ∈ (Ex ∪ {0})n such that ẽH⊤ = s + sx. This shifted instance can be solved using a slight
modification of the Stern-like and the BJMM-like algorithm introduced above. Since the entries of e are
picked independently, the Hamming weight of the modified instance follows a binomial distribution, i.e.,
we have

Pr(wtH(ẽ) = w) =

(
n
w

)
(z − 1)w

zn
∀w ∈ {0, . . . , n}.

In particular, the weight of ẽ2, i.e., the shifted error restricted to the small instance, is also binomially
distributed. Therefore, it is sufficient to enumerate solutions of the small instance with weight v0, where
0 ≤ v0 ≤ k + ℓ, in order to succeed with probability

Pr(wtH(ẽ2) = v0) =

(
k + ℓ

v0

)
(z − 1)v0z−k−ℓ.

The total cost of the solver is then the cost of a single iteration divided by the success probability. For
the Stern-like solver, the required number of iterations compensates the decreased cost per iteration
and thus shifting does not provide a speed up. Hence, the complexity of shifted Stern is again as in
Theorem 9. A BJMM-like solver, however, can benefit from the zeros, since intermediate lists anyways
use error vectors which are not of full weight. The complexity per iteration is given in Theorem 12.
It only remains to analyse the structure of the shifted errors in Ex and the supplementary elements in
Dx ⊆ {b− a | a, b ∈ Ex} \ (Ex ∪ {0}).

In the following, we perform this analysis for the particular case of p = 127 and z = 7, which are the
parameters used in the R-SDP variant of CROSS.

Example 13. Consider again the the error set E = {1, 2, 4, 8, 16, 32, 64} ⊂ F127 with size z = 7 and
additivity αE = 1. Shifting by x = 1, one creates error entries that are either zero or live in the modified
error set

E1 = {1, 3, 7, 15, 31, 63}.

In the given example, unlike its parent, the modified error set does not possess an additive structure.
This holds for shifting by x = 1 and for any x ∈ E.

Previous to shifting, E had a difference set D of size zD = 35 and additivity αD = 5. Shifting preserves
this additivity of D. Hence, one can build from the D corresponding to E a Dx which fits Ex. This is
done by shifting the elements of D and neglecting those that would represent zeros (which are excluded
from Ex). In our case, we obtain Dx of size zDx = 30 with αDx = 5.

The performances achieved by the Stern-like and the BJMM-like solvers are depicted in Figure 9.
For the comparison, we have chosen p = 127 and z = 7, as is the case for the R-SDP version of CROSS.
For fixed code rate R ≈ 0.59, the lower bound on the number of required binary operations is plotted
over the code length n. This choice of parameters gives a unique solution on average. We observe that
the Stern-like algorithm performs better than BJMM but slightly worse than shifted BJMM. For k = 76
and thus n = 127, all algorithms require more than 2143 operations. Hence, these parameters achieve the
security level of NIST I. Similarly, a cost of 2207, which corresponds to NIST III, is achieved for n = 187
and a cost of 2272, which corresponds to NIST V, is achieved for n = 251. Scripts for reproducing the
figure are available at https://www.cross-crypto.com/resources.
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Figure 9: Comparison of the finite regime performance of the Stern-like algorithm and the BJMM-like
algorithm. Depicted is the respective lower bound on the number of binary operations for p = 127, z = 7,
R ≈ 0.59 and varying code length n.

7.1.2 Generic Solvers for the R-SDP(G)

In this section, we extend the discussion of the computational hardness of R-SDP to R-SDP(G). For
this, we analyze to which extent the knowledge of G, or equivalently MG, can be utilized by an attacker.

Not Considering G A first naive approach to solving R-SDP(G) would be to enumerate the solutions
of the corresponding R-SDP, completely dismissing G. Then, for each solution e ∈ En of the syndrome
equation eH⊤ = s, one can check validity, i.e., whether e ∈ G. Since we dismiss G entirely, we are
solving an instance where we have many more solutions than over G. In fact, the number of solutions
over E is given by znpk−n, out of which at most zmpk−n + 1 solve the original R-SDP(G) instance.

Example 14. For the parameter choices, p = 509, z = 127, m = 25 and n = 55, k = 36, we get 2213.5

solutions over E, while we expect at most 15.7 solutions in G on average.

To enumerate the solutions of the parity-check equations in En, one can use the algorithms described
above or an adaption of Wagner’s algorithm [52] to R-SDP. Wagner’s algorithm is a multi-level variant
of Stern’s algorithm that is particularly efficient in finding solutions in regimes where multiple solutions
exist. All of these algorithms do, however, require sorting and storing of lists that hold at least as many
elements as solutions over En. Hence, the enormous number of solutions, together with the memory
access costs and further overheads, guarantee the security level.

As the discussion above shows, suitably chosen parameters guarantee that disregarding G leads to
costs above the security levels. Hence, we now discuss methods that solve R-SDP(G) and use the
knowledge of G.

Considering G A basic approach for this would be to go through all elements in G, of which there
are zm many. Then, for every element of e ∈ G, one checks whether the parity-check equations are
fulfilled. Clearly, the computational cost of such an attack can be easily pushed beyond the security level
by choosing m large enough, i.e., m > λ logz(2).

Therefore, we now consider a combination of the two mentioned approaches. In this hybrid approach,
one reduces the number of solutions over E, which are enumerated using the knowledge of G. Since a
BJMM-like solver cannot utilize the structure of G in its sum partitions, we discuss a method for solving
R-SDP(G) via a collision search.

Let us denote by MH ∈ F(n−m)×n
z a parity-check matrix of ⟨MG⟩. The attacker begins by searching

for a public key with a subgroup G, for which ⟨MH⟩ contains two subcodes with the following properties.

• The first subcode is of dimension da and has a support Ja of size ja = |Ja|. Hence, this first
subcode is generated by (0Ba 0) with Ba ∈ Fda×ja

z .

• The second subcode is of dimension db and has a support Jb of size jb = |Jb|. Hence, the second
subcode is generated by (0Bb 0) with Bb ∈ Fdb×jb

z .
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Figure 10: Illustration of Submatrix Stern/Dumer for R-SDP(G).

• The supports Ja and Jb are disjoint.

Due to the obvious connection to the codeword finding problem, the decisional version of this problem can
be shown to be NP-complete itself [8, Theorem 2]. The best-known approach to solving the computational
version is given by information set decoding, which can, however only succeed if such subcodes indeed
exist for a given G. According to [47, Theorem 1], a subcode of dimension d and support size j exists
with probability

P (j, d) ≤ min

{(
n

j

)
(zd − 1)j−d

[
n−m

d

]
z

[ nd ]
−1
z , 1

}
.

Hence, the probability that both subcodes exist in ⟨MH⟩ can be upper-bounded as P (ja, da) · P (jb, db).
It follows that (P (ja, da) ·P (jb, db))

−1 many groups G have to be considered on average to find one which
allows for suitable subcodes.

Once the two subcodes are obtained, the attacker can use them in an improved solver, which is
illustrated in Figure 10 and explained in the following. Using partial Gaussian elimination, one begins
by bringing MH and H into quasi-systematic form with respect to Ja ∪ Jb. That is we obtain a smaller
instance indexed by I ′ = Ja ∪ Jb, which is of size k + ℓ = |Ja ∪ Jb| = ja + jb. Let us define the following
two lists

La :=
{

(xa,xaM
⊤
a , g

xaH⊤
a ) | xa ∈ ker(Ba)}

}
,

Lb :=
{

(xb,−xbM
⊤
b , s2 − gxbH⊤

b ) | xb ∈ ker(Bb)}
}
.

These lists contain logz(|La|) = ja − da =: ρa and logz(|Lb|) = jb − db =: ρb elements.
In order to calculate the number of collisions between La and Lb, let us have a closer look at the

dimensions of the submatrices given in Figure 10. Since the width of the small instance is ja+jb, one can

see that Ha ∈ F(ja+jb−k)×ja
p and Hb ∈ F(ja+jb−k)×jb

p . We define, as usual, ℓ := ja +jb−k as the height of
this small instance. For MH , the total height of the small instance is given by ja + jb −m. This implies
that Ma and Mb are of height ja +jb−m−da−db = ρa +ρb−m. Let us define ℓ̃ = max{0, ρa +ρb−m}.
Then, each element of La, respectively of Lb, lives in Fja

z × Fℓ̃
z × Fℓ

p, respectively in Fjb
z × Fℓ̃

z × Fℓ
p.

Since the first part is an element of ker(Ba), respectively of ker(Bb), it can be represented using ρa,
respectively ρb, symbols of Fz. We refer to the combination of the second and third part as the label
of the element. As the following statement shows, the labels can be used to find valid combinations

41



CROSS NIST Submission 2023

in La × Lb: (xa,xb) ∈ ker(Ba) × ker(Bb) results in a solution of the small instance if and only if the
corresponding labels match:

xaM
⊤
a = −xbM

⊤
b ⇐⇒ (xa,xb)(Ma,Mb)

⊤ = 0,

gxaH⊤
a = s2 − gxbH⊤

b ⇐⇒ (gxa , gxb)(Ha,Hb)
⊤ = s2.

Hence, solutions of the small instance can be found via a collision search which is performed on the labels

of the list elements. Since the labels live in Fℓ̃
z × Fℓ

p, this search yields on average

zρa · zρb

zmax(ρa+ρb−m, 0) · pja+jb−k
:=

zρa · zρb

zℓ̃ · pℓ

collisions, which are extended to the complete instance.

Theorem 15. The discussed collision-based solver Submatrix Stern/Dumer, which is tailored to R-
SDP(G), uses M(p, n, k, z,m) bits of memory, which can be lower-bounded as

M(p, n, k, z,m) ≥ min{|La| · ρa, |Lb| · ρb} · log2(z),

where |La| = zρa and |Lb| = zρb . The number of binary operations can be bounded from below as

C(p, n, k, z,m) ≥ min
Ja,Jb

{
Ca + Cb + Ccoll

1 + zmpk−n
log2 (M(p, n, k, z,m)) +

1

P (ja, da) · P (jb, db)

}
,

where Ca, Cb and Ccoll are bounded as

Ca ≥ |La| ·
(
ρa · log2(z) + ℓ̃ · log2(z) + ℓ · log2(p)

)
,

Cb ≥ |Lb| ·
(
ρb · log2(z) + ℓ̃ · log2(z) + ℓ · log2(p)

)
,

Ccoll ≥ |La| · |Lb| · z−ℓ̃ · p−ℓ(ja + jb) log2(p),

with ℓ = ja + jb − k and ℓ̃ = max{0, ρa + ρb −m}.

Proof. The cost is obtained in a similar way as the cost of the standard R-SDP Stern/Dumer algorithm
given in Theorem 9. We state it for completeness.

To perform the collision search, the algorithm has to store the smaller list among La and Lb. Without
loss of generality, we assume in the following that this is La. Since this list contains elements of ker(Ba), at
least ρa log2(z) bits are required per list element. This gives the bound on the memory cost M(p, n, k, z).

Let us consider the algorithm’s time complexity C(p, n, k, z). As usual, the complexity of finding any
solution is given by the cost of finding a particular one divided by the number of solutions. Here, the
average number of solutions is tightly upper-bounded as 1 + zmpk−n.

When enumerating the solutions of the small instance, one must first store the vectors xa associated
with list La in positions depending on the corresponding label (xaM

⊤
a , g

xaH⊤
a ). The vectors can be

represented using ρa · log2(z) bits and the label has a size of ℓ̃ · log2(z)+ℓ · log2(p) bits with ℓ = ja +jb−k
and ℓ̃ = max{0, ρa + ρb −m}. Hence, this requires at least

|La| ·
(
ρa · log2(z) + ℓ̃ · log2(z) + ℓ · log2(p)

)
binary operations.

Next, the labels (−xbM
⊤
b , s2 − gxbH⊤

b ) of the of the elements in list Lb are calculated. The required
number of binary operations is computed as

|Lb|
(
ρb · log2(z) + ℓ̃ · log2(z) + ℓ · log2(p)

)
,

which results from the size of the involved objects.
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Solutions e2 of the small instance are obtained by performing a collision search. On average, |La| ·
|Lb| · z−ℓ̃p−ℓ collisions are found. For each collision, one checks whether e2 = (gxa , gxb) extends to a
solution e to the original problem. For this, one has to calculate at least one syndrome symbol of the
original instance, which is the sum of ja + jb elements of Fp. Hence, this step requires at least

|La| · |Lb| · z−ℓ̃ · p−ℓ · (ja + jb) log2(p)

binary operations.

Finally, the memory access cost is modeled with the conservative logarithmic cost model [29, 6], that
is, the cost per iteration is increased by a factor log2(M(p, n, k, z)).

Example 16. For the parameter choices, p = 509, z = 127,m = 25, n = 55 and k = 36, a one-
dimensional subcode with support size 19 exists with probability 0.45. Further, we assume that the
attacker uses a four-dimensional subcode with support size 23 which exists with probability 2−116.9.
Then, the algorithm given in Theorem 15 requires at least 2143.6 binary operations and a memory of
2132.7 bit.

7.2 Gröbner Basis Approach

Recall that in the R-SDP, Problem 2, given g ∈ F∗
p of prime order z, H ∈ F(n−k)×n

p , s ∈ Fn−k
p , and

E = {gi | i ∈ {1, . . . , z}} ⊂ F∗
p, one aims at deciding whether there exists e ∈ En such that eH⊤ = s.

We look at the complexity of solving the R-SDP using Gröbner basis methods.
The R-SDP is equivalent to deciding whether the system{

xH⊤ = s
xz
i = 1 for i ∈ {1, . . . , n}

has a solution, since the equations xz
i = 1 for i ∈ {1, . . . , n} force any potential solution to belong to the

set En.
Gröbner bases can always be used to solve systems of equations, but are rarely effective. We consider

the F5 Algorithm [9] to compute Gröbner bases. The complexity of F5 for homogeneous polynomials is

O

(
(n− k)dreg

(
n + dreg − 1

dreg

)ω)
∼ O

((
n + dreg
dreg

)ω)
where dreg is the degree of regularity and ω the exponent in the complexity of matrix multiplication.

Some recent lines of research (see [22, 25, 36]) focus on the complexity of dreg concerning similar
systems of random linear equations. These results show that dreg growth is linear in n. This leads us to
assume that dreg is also linear in n for our systems.

This leads to the complexity of computing the Gröbner bases for the system to be exponential, since(
n + dreg
dreg

)ω

= 2n·(1+c)·h2((1+c)−1)·ω+o(n),

where we used a standard approximation for the binomial coefficient and c > 0 comes from the linear
growth of dreg. Already small values of c imply that the complexity of computing the Gröbner bases
exceeds the cost of the presented combinatorial solvers.

Some experimental results back up this line of theory. Given the parameters p = 127, z = 7,
k = 1

2n, we obtain Table 2. The degree of regularity dreg and the CPU Time data in seconds have
been computed using MAGMA [24]. Both computations were run on a single core of an Apple M1 Pro
processor. Performing an exponential fitting, we obtain the plot in Figure 11 with the vertical axis
represented in log plot. The data is shown in blue, and is clearly exponential in nature, while the red
interpolation takes the form 5.83 × 10−8e1.93n. With a coefficient of determination R2 equal to 1.000,
we can say that the exponential interpolation represents the data almost perfectly.

Due to this exponential growth in time required, we anticipate that an adversary using Gröbner bases
to attack R-SDP will face an insurmountable computational obstacle at practical parameters.
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n dreg CPU time (sec)
4 13 0.000
6 14 0.007
8 16 0.242
10 18 13.171
12 19 625.829

Table 2: Gröbner basis computation data.
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Figure 11: Exponential fitting of data.

7.3 Analysis of the Algorithm with Respect to Known Attacks

We have shown that CROSS achieves EUF-CMA security in Theorem 8 following the approach of [41].
We have seen in Section 7.1 that the underlying problems R-SDP and R-SDP(G) are NP-hard and
provide the cost of generic decoders.

We point out that publishing the generators a1, . . . ,am ∈ En for the subgroup G does not give rise
to algebraic attacks. In fact, algebraic attacks that exploit the small order of the entries of e cannot be
mounted straightforwardly, as the multiplicative structure of E is incompatible with the additive linearity
of the syndrome computation.

For the following, we present two forgery attacks, adapted from [43]. The former is well known for
weighted challenges, while the latter is a new attack. We will adapt our parameters considering these
attacks.

7.3.1 Forgery Attacks

In this section, we describe two forgeries. We conservatively estimate the cost of these forgeries in terms
of CROSS operations. In our analysis, one elementary operation corresponds to simulating several of
the instructions that the prover would perform. As we argue in Section 8, this allows us to easily (and
conservatively) assess the cost of such attacks so that the recommended CROSS instances meet the NIST
security categories.

The first forgery we describe is relatively intuitive and consists of applying (for each round) one of the
strategies we described in the proof of Proposition 7. The forgery is successful if, for all rounds, either
β or b (or both) are guessed correctly; the cost of this attack is derived in the following Proposition.

Proposition 17. We consider the forgery that, for each round, first guesses both β(i) and b(i), then
follows the cheating Strategy 0 and 1 defined in the proof for Proposition 7. For the second challenges
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b(1), . . . , b(t), this attack runs in average time O
(

1
P (t,w,p)

)
, where

P (t, w, p) =

min{w,t−w}∑
w′=0

(
w
w′

)(
t−w
w′

)(
t
w

) (
1

p− 1

)2w′

.

Proof. The forgery is successful if all rounds are accepted, that is, if for each round either β(i) or b(i)

(or both) have been guessed correctly. The average number of tests is given by the reciprocal of the
probability that, for each round, both challenge values are correctly guessed. Conservatively, we do not
consider the cost of each test. Still, we lower bound the cost of the forgery by using the average number
of tests before the adversary’s guesses are valid for each round. Let us consider t rounds and a fixed
weight challenge b =

(
b(1), . . . , b(t)

)
the vector of challenges, with b(i) ∈ {0; 1} being the challenge for the

i-th round. When b has weight w, there will exist w many rounds with b(i) = 1 and t−w many rounds
with b(i) = 0. The adversary can now select the w rounds of b(i) = 1. If the adversary chooses a challenge
in one round correctly, this round will be accepted. However, if the adversary picks a challenge wrong,
there is still the possibility of having chosen β correctly. Thus, let us assume that w′ many rounds out
of the w guessed b = 1-rounds are wrong, for w′ ∈ {0, . . . ,min{w, t−w}}. Then this also implies that in
the guessed b = 0-rounds, there are w′ mistakes, which means that in 2w′ rounds, the adversary had to
have guessed β correctly. This gives an overall cheating probability of

min{w,t−w}∑
w′=0

(
w
w′

)(
t−w
w′

)(
t
w

) (
1

p− 1

)2w′

.

We now describe another forgery inspired by the attack in [43] to 5-pass schemes. The attack makes
use of the fact that the second challenge is generated after the first challenge, and, furthermore, it is
possible to generate multiple second challenges without modifying the commitments or the first challenge
value. This way, one can split the forgery into two separate phases, where the overall cost is given by
the sum of the two associated costs.

Proposition 18. We consider the following procedure:

1) sample Salt
$←− {0; 1}2λ, MSeed

$←− {0; 1}λ, generate seeds Seed(1), . . . , Seed(t) using the PRNG
tree;

2) guess values β̃(1), . . . , β̃(t) for the first challenge;

3) guess values b̃(1), . . . , b̃(t) for the second challenge (consider that
(
b̃(1), · · · , b̃(t)

)
has weight w);

4) for each i = 1, . . . , t, do:

4.1) sample u′(i) ∈ Fn
p and e′(i) ∈ G using Seed(i);

4.2) choose an arbitrary σ(i) ∈ G;

4.3) compute y∗(i) = u′(i) + β̃(i)e′(i);

4.4) compute s̃(i) = σ(i)(y∗(i))H⊤;

4.5) set c
(i)
0 = Hash

(
s̃(i) − β̃(i)s, σ(i), Salt, i

)
;

4.6) set c
(i)
1 = Hash(u′(i), e′(i), Salt, i);

5) compute c0 as the root of the tree MerkleTree
(
c
(1)
0 , . . . , c

(t)
0

)
and c1 = Hash

(
c
(1)
1 , . . . , c

(t)
1

)
; generate(

β(1), . . . , β(t)
)

= GenCh1(c0, c1, Msg, Salt);

6) let S =
{
i ∈ {1, · · · , t}

∣∣∣β̃(i) = β(i)
}

; if |S| ≥ t∗, proceed. Otherwise, restart from step 1);

7) for each round i ∈ S (i.e., such that β(i) = β̃(i)), set y(i) = y∗(i) and h(i) = Hash(y(i));

8) for each round i ̸∈ S (i.e., such that β(i) ̸= β̃(i)), do:
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8.1) if b̃(i) = 0:

S0.1) choose ẽ(i) ∈ Fn
p such that ẽ(i)H⊤ = s;

S0.2) choose ũ(i) ∈ Fn
p such that ũ(i)H⊤ = σ(y∗(i))H⊤ − β(i)s;

S0.3) set y(i) = ũ(i) + β(i)ẽ(i) and h(i) = Hash(y(i));

8.2) if b̃(i) = 1:

S1.1) set y(i) = y∗(i) and h(i) = Hash(y(i));

9) compute h and generate
(
b(1), . . . , b(t)

)
= GenCh2(c0, c1, β

(1), . . . , β(2), h, Msg, Salt);

10) if
(
b(1), . . . , b(t)

)
and

(
b̃(1), . . . , b̃(t)

)
are equal for all indices i ̸∈ S, proceed. Otherwise, restart from

step 8);

11) for each i = 1, . . . , t: if b(i) = 0, set f (i) = {σ(i),y(i)}, otherwise set f (i) = Seed(i).

The above algorithm is a forgery running on average time

O

(
min

t∗∈{0,...,t}

{
1

Pβ(t, t∗, p)
+

1

Pb(t, t∗, w, p)

})
,

where

Pβ(t, t∗, p) =

t∑
j=t∗

(
t

j

)(
1

p− 1

)j (
1− 1

p− 1

)t−j

,

Pb(t, t
∗, w, p) =

t∑
j=t∗

(
t
j

) (
1

p−1

)j (
1− 1

p−1

)t−j

Pβ(t, t∗, p)

min{j,w}∑
w∗=0

(
j
w∗

)2( t−j
w−w∗

)(
t
w

)2 .

Proof. The strategies followed by the forgery are, essentially, a rewriting of the ones in the proof for
Proposition 7. The algorithm iterates over the first loop (steps 1–6) until the choices on the first
challenge are valid for at least t∗ rounds. Once this is obtained, the algorithm freezes the commitments,
and the first challenge then starts making attempts until the second challenge is correctly generated.
This is the purpose of steps 7–10. For each attempt, the algorithm uses fresh values ẽ(i): this leads to a
different h and, consequently, to new values for the second challenge

(
b(1), . . . , b(t)

)
. By doing this, the

commitments prepared in the initial loop remain valid. This procedure gets repeated until the second
challenge amends the situation; namely, in every round where the attacker did not guess the correct
value for the first challenge, the value for the second challenge must be correct.

The total cost of the attack is the sum of the costs for the two phases. The probability that the
initial guess

(
β̃(1), . . . , β̃(t)

)
is valid, i.e., that it matches in at least t∗ positions with

(
β(1), . . . , β(t)

)
, is

Pβ(t, t∗, p) =

t∑
j=t∗

(
t

j

)(
1

p− 1

)j (
1− 1

p− 1

)t−j

.

Consequently, the average cost for the first loop is O
(

1
Pβ(t,t∗,p)

)
.

We now consider the second loop. Let S denote the set of indices i for which β(i) = β̃(i) and its
complement by SC . In the following, we will indicate j = |S|; notice that3

Pr[|S| = j] =

(
t
j

) (
1

p−1

)j (
1− 1

p−1

)t−j

Pβ(t, t∗, p)

Let b =
(
b(1), . . . , b(t)

)
and b̃ =

(
b̃(1), . . . , b̃(t)

)
, and indicate by bS (resp., b̃S) the vector formed by the

coordinates of b which are indexed by S (resp., b̃S). Analogously, we denote by bSC (resp., b̃SC ) the

vector formed by the coordinates of b (resp., b̃) which are not indexed by S. For the second loop to

3Formally this is the conditional probability, given that |S| ≥ t∗; to avoid burdening the (already involved) notation,
we do not indicate it explicitly.
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halt, b must be such that bSC = b̃SC . Let w∗ denote the number of 1-guesses for the rounds indexed
by S; that is, w∗ is the Hamming weight of b̃S . Notice that

Pr
[
wt(b̃S) = w∗

]
=

(
j
w∗

)(
t−j

w−w∗

)(
t
w

) .

The probability that a generated b is valid, i.e., bSC = b̃SC , is

Pr
[
b is valid

∣∣∣wt(b̃S) = w∗
]

=

∣∣∣{b ∈ {0, 1}t ∣∣∣wt(b) = w, bSC = b̃SC

}∣∣∣(
t
w

)
=

∣∣∣{b ∈ {0, 1}t ∣∣∣wt(bS) = w∗, bSC = b̃SC

}∣∣∣(
t
w

)
=

(
j
w∗

)(
t
w

) .

An example of a valid b is reported below, for example, with t∗ = 5 and w∗ = 3.

First t∗ rounds Last t− t∗ rounds

Guessed β̃(i) 2 71 16 23 4 5 98 121 46 29 82 · · · 45

Guessed b̃(i) 0 1 0 1 1 1 1 0 1 1 1 · · · 0
Actual β(i) 2 71 16 23 4 7 120 99 21 7 124 · · · 3
Actual b(i) 1 1 0 0 1 1 1 0 1 1 1 · · · 0

Weight w∗ Weight w − w∗

Putting everything together, we have that a test for b is valid with an average probability

Pb(t, t
∗, w, p) =

t∑
j=t∗

Pr[|S| = j] ·
min{j,w}∑
w∗=0

Pr[wt(b̃S) = w∗] · Pr
[
b is valid

∣∣∣wt(b̃S = w∗)
]

=

t∑
j=t∗

(
t
j

) (
1

p−1

)j (
1− 1

p−1

)t−j

Pβ(t, t∗, p)

min{j,w}∑
w∗=0

(
j
w∗

)2( t−j
w−w∗

)(
t
w

)2 .

The overall cost of the attack is estimated by summing the costs for both phases and optimizing over t∗,
that is

min
t∗∈{0,...,t}

{
1

Pβ(t, t∗, p)
+

1

Pb(t, t∗, w, p)

}
.

8 Parameters and Description of Expected Security Strength

Our first concern for the parameter choices is with regard to the security of the system. Following that,
we aimed to select values for the field size p, the number of elements in En (i.e. zn), and the number of
elements in G (i.e. zm), such that their arithmetic is efficient. These parameters also had to take into
account the trade-off between signature size and speed. To this end, the parameter-finding process was
split into two phases:

i) choose code and restriction parameters, n, k, p and z,m, respectively, so that the best R-SDP/R-
SDP(G) solvers require a computational effort matching the one to break AES with a 128, 192, or
256-bit keys (code available at https://www.cross-crypto.com/resources) and

ii) determine the optimal length t and weight w of the fixed-weight challenge vector b.
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The first phase of the parameter selection process was comprised of searching for all prime values
p satisfying 17 ≤ p ≤ 2, 477 for all the admissible sizes of E ⊂ F∗

p with z prime and code rates R in
{0.3, 0.35, 0.4, . . . , 0.7}, such that the smallest value of n solving R-SDP/R-SDP(G) with optimal m on a
k-dimensional code in Fn

p with rate R exceeds 2λ. This employs the computational complexities reported
in Section 7.1. The second phase of the parameter selection involved computing for each value of t
between λ and 1, 100, the set of (t, w) pairs such that the complexity of the best forgery attack against
CROSS exceeds λ, and, for each value w, the corresponding value of t is minimum. The reason for this
choice of an upper limit for t follows from striving to limit the amount of repetitions of the CROSS-ID
protocol, to preserve computational efficiency. This exploration resulted in the exhaustive computation
of large sets of parameter tuples, one for each of the NIST security categories. Each set contained
parameter tuples which are equivalent to the security standpoint, both when considering attacks against
the underlying R-SDP/R-SDP(G), and when considering forgery attacks through guessing.

We proceeded then pruning the parameter sets according to efficiency considerations. Given the
structurally small size of the CROSS private and public keys (a single seed, and a seed plus a syndrome,
respectively, as described in Section 5), we selected the signature size as the main space parameter, to
balance the trade-offs. Indeed, the common alternative of considering signature and public key sizes
does not alter the final results. We consider in this phase, as a proxy of the execution time, the number
of rounds t; essentially, both the signature and verification time in CROSS are proportional to it, albeit
through different multiplicative factors.

The first steps in pruning are to consider the entire parameter tuple set for each NIST category and
evaluate the impact of the base field choice on the final signature size.

We employed p = 127 and z = 7 for the R-SDP variant of CROSS. While incurring a slight penalty
to signature size, this choice allows us to have much more efficient arithmetic in modulo p and modulo z.
Furthermore, all values of both Fp and Fz are efficiently representable within a single byte. Indeed both
primes are Mersenne primes, which allows for an efficient modular reduction without the use of a divisor
functional unit. For the R-SDP(G) variant of CROSS, we could not employ the same arithmetic choice
due to the value of z being too small. We therefore have selected p = 509, as F∗

p admits a subgroup with
cardinality z = 127, which in turn allows us to employ efficient Mersenne arithmetic in one of the two
fields over which we compute.

Finally, we proceed to the pruning of the parameter sets by the code rate and number of rounds.
Concerning the trade-off between speed and signature size, there is a phenomenon of diminishing returns
in increasing the number of iterations t to reduce the signature size. The final outcome of the parameter
selection procedure is the set of parameters reported in Table 3. For each NIST security category, we
propose three parameter sets, selecting three optimization corners: computational speed in the signature
and verification procedures, a balanced version which aims for stability, and signature size. We also
report, for ease of comparison, the figures from the SPHINCS+ signature scheme, which NIST has
selected for standardization, and has been indicated as a bar for comparisons. Our proposed parameter
sets obtain smaller keypairs than SPHINCS+, although with a slightly larger public key. However, the
public key size never exceeds 121 bytes, and never exceeds the length of an equivalent (pre-quantum)
security level RSA keypair. Our signature sizes for CROSS-R-SDP(G), when tuned for small signature
sizes, are within a ± 6% range with respect to the ones of SPHINCS+, with the signature for NIST
security category 1 being slightly smaller. The signature size for CROSS-R-SDP(G), when tuned for fast
signature is always smaller than the corresponding SPHINCS+one.

We note that the reported signature sizes are slightly different from the ones obtainable from rounding
to the nearest integer, the estimates coming from Equation (5). This is due to the fact that (t −
w) log2

(
t

t−w

)
is a simple, but sometimes loose, estimate on the number of nodes to be sent in both the

Seed CSPRNG tree, and the Merkle tree in Algorithm 3. Furthermore, our choice to encode each element
of the sequences rsp0 bit-packing it separately (according to in Section 9) results in a minimal loss in
encoding efficiency. We note that if byte alignment is not an implementation concern, this encoding
efficiency loss can be fully removed without any change to the security or functionality of CROSS.

8.1 R-SDP Variant of CROSS

Parameter Choice 1 The parameter choice p = 127, z = 7, n = 127, k = 76 attains the claimed
security level NIST category 1, i.e., 128 AES gates, roughly 143 bits. The best-performing solver is the
shifted BJMM-like algorithm introduced in Section 7. As illustrated in Example 13, E1 with αE1

= 0
and D1 of size zDx

= 30 with αD1
= 5 were used. Optimizing the parameters of the algorithm results in
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Table 3: Parameter choices, keypair and signature sizes recommended for both CROSS-R-SDP and
CROSS-R-SDP(G), assuming NIST security categories 1, 3, and 5, respectively. Keypair and signature
sizes of the SPHINCS+ signature standard are also provided for the sake of comparison.

Algorithm and Optim.
p z n k m t w

Pri. Key Pub. Key Signature
Security Category Corner Size (B) Size (B) Size (B)

CROSS-R-SDP 1
fast 127 7 127 76 - 163 85 16 61 19136

balanced 127 7 127 76 - 252 212 16 61 12896
small 127 7 127 76 - 960 938 16 61 10064

CROSS-R-SDP 3
fast 127 7 187 111 - 245 127 24 91 42658

balanced 127 7 187 111 - 398 340 24 91 28198
small 127 7 187 111 - 945 907 24 91 23618

CROSS-R-SDP 5
fast 127 7 251 150 - 327 169 32 121 76226

balanced 127 7 251 150 - 507 427 32 121 51024
small 127 7 251 150 - 968 912 32 121 43560

CROSS-R-SDP(G) 1
fast 509 127 55 36 25 153 79 16 38 12456

balanced 509 127 55 36 25 243 206 16 38 9220
small 509 127 55 36 25 871 850 16 38 7940

CROSS-R-SDP(G) 3
fast 509 127 79 48 40 230 123 24 59 27308

balanced 509 127 79 48 40 255 176 24 59 23356
small 509 127 79 48 40 949 914 24 59 18164

CROSS-R-SDP(G) 5
fast 509 127 106 69 48 306 157 32 74 48906

balanced 509 127 106 69 48 356 257 32 74 40102
small 509 127 106 69 48 996 945 32 74 32710

SPHINCS+-1
fast - - - - - - - 64 32 16796
small - - - - - - - 64 32 8080

SPHINCS+-3
fast - - - - - - - 96 48 35664
small - - - - - - - 96 48 17064

SPHINCS+-5
fast - - - - - - - 128 64 49216
small - - - - - - - 128 64 29792

ℓ = 33 and v0 = 72, which implies a success probability of 2−22.7. Further, δ1 = 4 and δ2 = ν1 = ν2 = 0
are used. These parameters imply that a conservative lower bound on the memory requirement is given
by 2116 bit. The total time complexity is conservatively lower-bounded as at least 2143 binary operations.
For the Stern-like algorithm, ℓ = 20 achieves the best possible performance, which requires at least 2149

binary operations and at least 2141 bits of memory.
We chose three pairs (t, w), namely (163, 85), (252, 212) and (960, 938), where t denotes the number

of rounds and w the weight of the second challenge. The (t, w) were chosen such that the forgery attack
in Proposition 18 has a cost of 128 bits. Since the operations in the forgery attack have a higher cost
than AES gates, we attain the NIST category 1.

Parameter Choice 3 The parameter choice p = 127, z = 7, n = 187, k = 111 attains the claimed
security level NIST category 3, i.e., 192 AES gates, roughly 207 bits. The best-performing solver is the
shifted BJMM-like algorithm introduced in Section 7. As illustrated in Example 13, E1 with αE1

= 0
and D1 of size zDx

= 30 with αD1
= 5 were used. Optimizing the parameters of the algorithm results in

ℓ = 45 and v0 = 104, which implies a success probability of 2−29.7. Further, δ1 = 4 and δ2 = ν1 = ν2 = 0
are used. These parameters imply that a conservative lower bound on the memory requirement is given
by 2169 bit. The total time complexity is conservatively lower-bounded as at least 2207 binary operations.
For the Stern-like algorithm, ℓ = 28 achieves the best possible performance, which requires at least 2213

binary operations and at least 2201 bits of memory.
We chose three pairs (t, w), namely (245, 127), (398, 340) and (945, 907), where t denotes the number

of rounds and w the weight of the second challenge. The (t, w) were chosen such that the forgery attack
in Proposition 18 has a cost of 192 bits. Since the operations in the forgery attack have a higher cost
than AES gates, we attain the NIST category 3.
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Parameter Choice 5 The parameter choice p = 127, z = 7, n = 251, k = 150 attains the claimed
security level NIST category 5, i.e., 256 AES gates, roughly 272 bits. The best-performing solver is the
shifted BJMM-like algorithm introduced in Section 7. As illustrated in Example 13, E1 with αE1

= 0
and D1 of size zDx

= 30 with αD1
= 5 were used. Optimizing the parameters of the algorithm results in

ℓ = 67 and v0 = 152, which implies a success probability of 2−29. Further, δ1 = 8 and δ2 = ν1 = ν2 = 0
are used. These parameters imply that a conservative lower bound on the memory requirement is given
by 2254 bit. The total time complexity is conservatively lower-bounded as at least 2273 binary operations.
For the Stern-like algorithm, ℓ = 38 achieves the best possible performance, which requires at least 2281

binary operations and at least 2271 bits of memory.
We chose three pairs (t, w), namely (327, 169), (507, 427) and (968, 912), where t denotes the number

of rounds and w the weight of the second challenge. The (t, w) were chosen such that the forgery attack
in Proposition 18 has a cost of 256 bits. Since the operations in the forgery attack have a higher cost
than AES gates, we attain the NIST category 5.

8.2 R-SDP(G) Variant of CROSS

Parameter Choice 1 The parameter choice p = 509, z = 127, n = 55, k = 36, and m = 25 attains the
claimed security level NIST category 1, i.e., 128 AES gates, roughly 143 bits. The best-performing solver
is the submatrix Stern/Dumer algorithm introduced in Section 7.1. It uses a one-dimensional subcode
of support 19 and a four-dimensional subcode of support 23. Then, the algorithm requires at least 2143

binary operations and 2132 bits of memory.
We chose three pairs (t, w), namely (153, 79), (243, 206) and (871, 850), where t denotes the number

of rounds and w the weight of the second challenge. The (t, w) were chosen such that the forgery attack
in Proposition 18 has a cost of 128 bits. Since the operations in the forgery attack have a higher cost
than AES gates, we attain the NIST category 1.

Parameter Choice 3 The parameter choice p = 509, z = 127, n = 79, k = 48, and m = 40 attains the
claimed security level NIST category 3, i.e., 192 AES gates, roughly 207 bits. The best-performing solver
is the submatrix Stern/Dumer algorithm introduced in Section 7.1. It uses a one-dimensional subcode
of support 28 and a two-dimensional subcode of support 30. Then, the algorithm requires at least 2210

binary operations and 2196 bits of memory.
We chose three pairs, (t, w), namely (230, 123), (255, 176) and (949, 914), where t denotes the number

of rounds and w the weight of the second challenge. The (t, w) were chosen such that the forgery attack
in Proposition 18 has a cost of 192 bits. Since the operations in the forgery attack have a higher cost
than AES gates, we attain the NIST category 3.

Parameter Choice 5 The parameter choice p = 509, z = 127, n = 106, k = 69, and m = 48 attains
the claimed security level NIST category 5, i.e., 256 AES gates, roughly 271 bits. The best-performing
solver is the submatrix Stern/Dumer algorithm introduced in Section 7.1. It uses a one-dimensional
subcode of support 37 and a four-dimensional subcode of support 41. Then, the algorithm requires at
least 2272 binary operations and 2259 bits of memory.

We chose three pairs (t, w), namely (306, 157), (356, 257) and (996, 945), where t denotes the number
of rounds and w the weight of the second challenge. The (t, w) were chosen such that the forgery attack
in Proposition 18 has a cost of 256 bits. Since the operations in the forgery attack have a higher cost
than AES gates, we attain the NIST category 5.

9 Implementation Techniques

Choice for CSPRNGs and Hash Functions CROSS requires two auxiliary primitives: a CSPRNG
and a cryptographic hash function. Instances of the CSPRNG are used to sample uniformly algebraic
objects, such as vectors and matrices composed of elements from Fp and Fz, or to derive other seeds in
a hierarchical manner, via the seed-tree construction [18].

Instances of the hash functions are used to construct a Merkle tree of the commitments, to compute
the digests from which challenges are sampled and to compute the commitments themselves. In the
following, we give the rationale behind our choice of concrete auxiliary primitives to instantiate our
CSPRNG and hash function as stated in Table 4.
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Table 4: Symmetric primitives used in CROSS for each NIST category.

NIST category CSPRNG Hash Function

1 SHAKE-128 SHAKE-128 with a 256 bit output
3 SHAKE-256 SHAKE-256 with a 384 bit output
5 SHAKE-256 SHAKE-256 with a 512 bit output

For the CSPRNG, we performed a comparative benchmark of AES-CTR-DRBG [11] and SHAKE,
the extendable output function standardized in NIST FIPS 202 [46]. Our approach was to benchmark
the two primitives in CROSS and consider, for the AES-CTR-DRBG, both a software implementation of
the AES block cipher and the use of Intel AES-NI ISA extensions. Our benchmark results have shown
that the SHAKE extendable output functions yield better overall performances compared to the use of
AES-CTR-DRBG. Therefore, we opted for SHAKE-128 for NIST security category 1 and SHAKE-256
for NIST security categories 3 and 5.

We considered, as concrete cryptographic hash functions, the NIST standard SHA-2 (standardized
in [45]), SHA-3 and SHAKE (standardized in [46]), employing digest sizes of 2λ for each security level.
As a consequence, we decided to select FIPS-202 based primitives over SHA-2 to benefit from a smaller
executable code size in memory-constrained devices such as microcontrollers and reduced area consump-
tion in FPGA/ASIC implementations, thanks to the possibility of sharing the SHA-3/SHAKE inner
state logic between the CSPRNG and the hash function. Furthermore, FIPS-202 primitives are designed
according to criteria which minimize the Boolean degree of the round function, allowing for greater de-
gree of protection against power side-channel attacks. Finally, we note that NIST has already expressed
a preference towards no longer using SHA-2 by electing not to standardize the Kyber variants which
employed it.

Our benchmarks obtained a small execution time gain by employing SHA-2 (in the few percentage
points range) over SHA-3. Considering the fact that the security margin of the scheme is constrained
by the collision resistance of the chosen underlying hash function, we considered the use of SHAKE128
with a 256 bit outputs for category 1, and SHAKE256 with 384 and 512 bit outputs for categories 3 and
5, respectively. The selected SHAKE functions share the same collision resistance of SHA-3 instances
with the same output length (as stated in [46]), while processing the input information faster (thanks
to their larger rate parameter). These considerations led us to choose a truncated-output SHAKE as
our cryptographic hash function; this further improves on the required code complexity in software
implementations and reduces the number of dedicated hardware components for hashing and random
number generation to a single SHAKE128/SHAKE256 module.

Finally, in order to simplify constant time implementations, we chose to compute the amount of
randomness which should be extracted from the CSPRNGs when generating randomly the appropriate
objects in such a way that the rejection sampling processes we perform fail with a probability 2−λ. We
provide in the submission package a Python script which computes such values automatically for all our
parameter sets.

Packing and Unpacking The public key’s syndrome s and the response vectors rsp0, which are part
of the signature, consist of elements in Fp or Fz. For the chosen values of p and z, the maximum
number of bits needed to store values in Fp (respectively Fz) does not require a number of bits that
is a multiple of eight. It is reasonable to store these values bit-packed to reduce signature and public
key size. For the R-SDP variant of CROSS, we therefore need ⌈(n− k) · 7/8⌉ bytes for the syndrome s,
⌈n · 7/8⌉ bytes per y in rsp0, and ⌈n · 3/8⌉ bytes per δ in rsp0. For the R-SDP(G) variant of CROSS, we
need ⌈(n − k) · 9/8⌉ bytes for the syndrome s, ⌈n · 9/8⌉ bytes per y in rsp0, and ⌈n · 7/8⌉ bytes per σ
in rsp0. The bit-packed pattern for Fp elements in the R-SDP variant of CROSS and Fz elements in the
R-SDP(G) variant of CROSS is shown in Figure 12, while the bit-packed pattern for Fp elements in the
R-SDP(G) variant of CROSS is depicted in Figure 13. Finally, Figure 14 shows the bit-packed pattern
for Fz elements in the R-SDP variant of CROSS.

Efficient arithmetic for F7 and F127 Implementing CROSS requires, besides the auxiliary CSPRNG
and hash function, a set of arithmetic primitives which act on collections of either Fp or Fz elements. The
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el0 el1 el2 el3 el4 el5 el6 el7 ...

...
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Figure 12: Packing of elements with p = 127 and z = 127, s = {el0, ..., eln−k}, y = {el0, ..., eln} and
σ = {el0, ..., eln}

el0 el1 el2 el3 el4 el5 el6 el7 ...

...
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Figure 13: Packing of elements with p = 509, s = {el0, ..., eln−k}, y = {el0, ..., eln}

simple nature of the arithmetic operations allows for a straightforward constant time implementation.
In particular, vector additions, vector subtractions, and point-wise vector multiplications are realized
by countable loops, with a compile-time determined trip-count. Similarly, matrix-vector multiplications
by either H or MG are characterized by countable nested loops sharing the data-independent execution
time of the vector operations.

The only arithmetic operation which may be affected by a variable time implementation is the com-
putation which, given a vector η = [v[0], . . . ,v[n−1]] in Fz, computes the vector e = [e0, . . . , en−1] in Fp

such that for all 0 ≤ i < n we have e[i] = gv[i], where g is the generator of the restricted subgroup E. A
straightforward implementation would employ a square and multiply strategy, which is affected by timing
side-channel vulnerabilities. To avoid this issue, we resorted to two different techniques, depending on
whether z = 7 or z = 127, which are the only two values which we need to treat. In the z = 7 case,
we have that p = 127, and therefore its elements can be stored in a single byte, encoded as in natural
binary encoding. As a consequence, it is possible to fit the entire look-up table for the seven values
{g0, g1, . . . , g6} in a single, 64-bit register. A look-up in this single-register-sized table takes constant
time as the entire table is loaded, regardless of the value being looked up. In the z = 127 case, we have
that p = 509. As a consequence, for software implementations, two bytes are required to represent an
Fp element, and the table-based approach cannot be applied in the same straightforward fashion, as in
the aforementioned case. To this end, we implement the gi operation through a square-and-multiply
approach where all the values {g20 , g21 , . . . , g26} mod p are precomputed constants, which are composed
through a single arithmetic expression where each power of two is selected via an arithmetic predicated
expression. The modular reductions are performed tree-wise to reduce their number to a minimum.

A final note on the arithmetic employed to implement computations on both F7 and F127 concerns
the runtime data representation. We work, in both cases, performing reductions modulo 8 and 128
respectively, thus resulting in a double representation of the zero value (as 0 and 7 for F7, and as 0 and
127 for F127). This, in turn, effectively reduces the cost of the modular reductions to, at most, two shift
and add operations. The values with the double-zero representation are then normalized via a constant
time arithmetic expression before emission.

Merkle tree and proof To reduce the signature size, we implement a Merkle tree structure for the
cmt0 hashes and include its root d0, as well as a challenge-dependent Merkle proof MerkleProofs in the
signature. For t leaves, a Merkle tree contains 2t − 1 nodes that can be stored in a one-dimensional
array, where each entry corresponds to a hash value. For a balanced tree where t = 2k for some k ∈ N,
the leaves are located at the last t entries, and traversing through the tree is straightforward, as each

el0 el1 el2 el3 el4 el5 el6 el7 ...

...
Byte 0 Byte 1 Byte 2

Figure 14: Packing of elements with z = 7, δ = {el0, ..., eln}
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level i in the tree contains precisely half of the nodes of level i + 1. For CROSS, the number of leaves
corresponds to the number of rounds t that are computed. As seen from Table 3, the choice of t will not
lead to balanced tree structures. Implementing a balanced structure merely for the sake of simplicity
of tree traversal would lead to a significant amount of unused memory. Therefore, it has been decided
to implement unbalanced trees and use some small additional arrays that store the extra information
required to compute the parent or child node indices. The positions of leaves inside the Merkle tree array
also depend on the unbalanced tree’s specific structure, so we implement another array of size t to store
these indices. It has to be mentioned that these arrays can be pre-computed offline for each choice of t
and, thus, would have no impact on performance. Therefore, dedicated procedural descriptions of these
setup algorithms, setupTree() and leafIndices(), are not included in the specification document.
Their basic idea is, however, to construct the tree by iteratively traversing through the right children
(starting from the root) and finding balanced sub-trees on the left-child nodes. Accumulating the number
of nodes in each tree level (stored in num) then allows one to compute the level offsets off and leaf indices
idx.

The computation of the Merkle tree and its root is shown in Algorithm 4. Taking the commitment
hashes cmt0, it returns the Merkle tree T and its corresponding root d0. In the first step, the arrays
off, num, and idx are computed and store the information on the tree structure as described above
(again, these could be pre-computed for any choice of t). The commitment values are placed at their
corresponding positions in the tree. Finally, starting at the last node in the tree, the parent nodes are
computed by hashing their siblings. Two additional variables ctr and lvl are used to choose the correct
value from the offset array off. Their updating procedure is abstracted as updateCtr() for compactness.
It decrements the variable lvl by one if ctr reaches the number of nodes per level as stored in num. The
root d0 is the first digest in the tree T .

Algorithm 4: MerkleRoot(cmt0)

Input: cmt0[0], . . . , cmt0[t− 1]: commitments representing the leaves.
Output: d0: The root of the Merkle tree.

T : The Merkle tree structure.
Data: T : The Merkle tree structure comprises 2t− 1 nodes, where each node is a hash digest of

its children.
idx: A vector of t entries storing the indices of the leaves.
num: A vector of log2(t) + 1 entries storing the number of nodes per tree level.
off: A vector of log2(t) + 1 entries storing offsets for the index computation of parent and
child nodes.

// Can be pre-computed at compile time, only depend on t
1 off,num← setupTree()
2 idx← leafIndices(off)

// Place commitments on leaves

3 for i← 0 to t do
4 T [idx[i]]← cmt0[i]
5 end

// Hash child nodes to create digest of parent node

6 lvl← log2(t)− 1
7 ctr← 0
8 for i← 2t− 2 to 1 by −2 do
9 p← (i− 1)/2 + off[lvl]

10 T [p]← Hash(T [i− 1] || T [i])
11 ctr, lvl← updateCtr(ctr, lvl,num)

12 end
13 d0 ← T [0]
14 return d0, T

Algorithm 5 shows the generation of the Merkle proof MerkleProofs and works as follows. In a first
step, the helper arrays off, num, and idx are computed as before. As the Merkle proof should only be
generated for a subset of commitments cmt0[i] for which the challenge bit b[i] = 0, an additional flag
tree T ′ is used to indicate the corresponding subset of commitments. Therefore, T ′ is initialized to all
0, and only the entries for nodes for which the proof should be computed are set to 1, as shown in lines
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3 to 8. From line 12 onward, the algorithm traverses through the tree and sets all the entries in T ′ to 1
as soon as at least one of its children has been labeled accordingly. Finally, if only one of the two child
nodes has been computed (or is a leaf for which the proof is created), its uncomputed sibling is added
to the Merkle proof MerkleProofs. Notice that if both siblings are labeled as computed, nothing needs to
be added to the proof, as the corresponding parent node can already be computed from its children.

Algorithm 5: MerkleProofs(T , cmt0,b)

Input: T : The Merkle tree computed during MerkleRoot.
cmt0[0], . . . , cmt0[t− 1]: commitments representing the leaves.
b: The challenge vector of size t.

Output: MerkleProof: The vector containing the Merkle proof nodes.
Data: T : The Merkle tree structure comprises 2t− 1 nodes, where each node is a hash digest of

its children.
T ′: A binary flag tree of 2t− 1 nodes. A node labeled with 1 is computed and, thus, is
not required in the proof.
idx: A vector of t entries storing the indices of the leaves.
num: A vector of log2(t) + 1 entries storing the number of nodes per tree level.
off: A vector of log2(t) + 1 entries storing offsets for the index computation of parent and
child nodes.

// Can be pre-computed at compile time, only depend on t
1 off,num← setupTree()
2 idx← leafIndices(off)

// Label T ′ with leaf nodes for which proof is created

3 T ′ ← {0}
4 for i← 0 to t− 1 do
5 if b[i] = 0 then
6 T ′[idx[i]]← 1
7 end

8 end

9 lvl← log2(t)− 1
10 ctr← 0
11 len← 0
12 for i← 2t− 2 to 1 by −2 do
13 p← (i− 1)/2 + off[lvl]
14 T ′[p]← T ′[i− 1] ∨ T ′[i]

// Right child computed, left child not so add it to proof

15 if T ′[i] = 1 ∧ T ′[i− 1] = 0 then
16 MerkleProofs[len]← T [i− 1]
17 len← len + 1

18 end

// Left child computed, right child not so add it to proof

19 if T ′[i] = 0 ∧ T ′[i− 1] = 1 then
20 MerkleProofs[len]← T [i]
21 len← len + 1

22 end
23 ctr, lvl← updateCtr(ctr, lvl,num)

24 end
25 return MerkleProofs

The final algorithm RecomputeMerkleRoot(), upon taking the commitment values cmt0, the
Merkle Proof MerkleProofs, and the challenge vector b, re-computes the root of the Merkle tree T and
returns its root d′0 for verification. The procedure is described in Algorithm 6, and as before, uses a flag
tree T ′ to indicate computed nodes.

In lines 3 to 9, T and T ′ are initialized by placing the commitments cmt0[i] that were re-computed by
the verifier on the tree T and by labeling the corresponding entries in T ′ as computed. When traversing
through the tree afterward, positions are skipped where both siblings are not computed (and are thus
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unused). Otherwise, if at least one sibling has been computed, the corresponding node is either taken
from the tree (if computed) or from MerkleProofs (if not computed) and placed in a temporary vector
h that stores the hash input. This input is then hashed, and the digest is placed on the Merkle tree T
at the position of the parent node. This parent node is then also labeled as 1 in the flag tree T ′. After
iterating through the tree, the root d′0 to be returned is stored at the first position in T .
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Algorithm 6: RecomputeMerkleRoot(cmt0,MerkleProofs,b)

Input: cmt0[0], . . . , cmt0[t− 1]: commitments representing the leaves.
MerkleProofs: Merkle proof nodes provided in the signature.
b: The challenge vector of size t.

Output: d′0: The recomputed root of the Merkle tree.
Data: T : The Merkle tree structure comprised of 2t− 1 nodes, where each node is a hash digest

of its children.
T ′: A binary flag tree of 2t− 1 nodes. A node labeled with 1 is computed and, thus, is
not required from the proof.
idx: A vector of t entries storing the indices of the leaves.
num: A vector of log2(t) + 1 entries storing the number of nodes per tree level.
off: A vector of log2(t) + 1 entries storing offsets for the index computation of parent and
child nodes.

// Can be pre-computed at compile time, only depend on t
1 off,num← setupTree()
2 idx← leafIndices(off)

// Fill T and label T ′ with leaf nodes that were computed by the verifier

3 T ′ ← {0}, T ← {0}
4 for i← 0 to t− 1 do
5 if b[i] = 0 then
6 T ′[idx[i]]← 1
7 T [idx[i]]← cmt0[i]

8 end

9 end

10 lvl← log2(t)− 1
11 ctr← 0
12 len← 0
13 for i← 2t− 2 to 1 by −2 do
14 if T ′[i] = 0 ∧ T ′[i− 1] = 0 then
15 ctr, lvl← updateCtr(ctr, lvl,num)
16 continue

17 end

// Take first node from tree if valid, else from proof.

18 if T ′[i] = 1 then
19 h[1]← T [i]
20 end
21 else
22 h[1]← MerkleProofs[len]
23 len← len + 1

24 end

// Take second node from tree if valid, else from proof.

25 if T ′[i− 1] = 1 then
26 h[0]← T [i− 1]
27 end
28 else
29 h[0]← MerkleProofs[len]
30 len← len + 1

31 end
32 p← (i− 1)/2 + off[lvl]
33 T [p]← Hash(h)
34 T ′[p]← 1
35 ctr, lvl← updateCtr(ctr, lvl,num)

36 end
37 d′0 ← T [0]
38 return d′0
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Table 5: Computation time expressed in clock cycles for all CROSS primitives and variants. Measure-
ments collected via rtdscp on an AMD Ryzen 5 Pro 3500U , clocked at 2.1GHz. The computer was
running Debian GNU/Linux 12. Computation time benchmarks for SPHINCS+ signature scheme “sim-
ple” variant (the “robust” is slower) and the RSA signature taken from eBACS [15], software package
version supercop-20230530, running on the Intel Core i3-10110U “comet” machine

NIST Parameter KeyGen Sign Verify
Cat. Set (Mcycles) (Mcycles) (Mcycles)

1

CROSS-R-SDP-f 0.04 1.28 0.78
CROSS-R-SDP-b 0.04 2.38 1.44
CROSS-R-SDP-s 0.04 8.96 5.84

CROSS-R-SDP-(G)-f 0.02 0.94 0.55
CROSS-R-SDP-(G)-b 0.02 1.85 1.09
CROSS-R-SDP-(G)-s 0.02 6.54 3.96

3

CROSS-R-SDP-f 0.08 2.75 1.69
CROSS-R-SDP-b 0.08 4.97 2.89
CROSS-R-SDP-s 0.08 12.20 6.80

CROSS-R-SDP-(G)-f 0.04 2.04 1.21
CROSS-R-SDP-(G)-b 0.04 2.63 1.53
CROSS-R-SDP-(G)-s 0.04 9.67 5.61

5

CROSS-R-SDP-f 0.14 4.93 3.04
CROSS-R-SDP-b 0.14 8.26 5.00
CROSS-R-SDP-s 0.14 15.69 9.37

CROSS-R-SDP-(G)-f 0.07 3.93 2.32
CROSS-R-SDP-(G)-b 0.07 4.99 2.96
CROSS-R-SDP-(G)-s 0.07 14.12 7.73

SPHINCS+ (1-f-SHAKE) 4.68 153.1 9.16
SPHINCS+ (1-s-SHAKE) 149.63 2, 407.09 3.81

SPHINCS+ (3-f-SHAKE) 6.84 194.89 15.48
SPHINCS+ (3-s-SHAKE) 144.57 3, 313.34 4.67

SPHINCS+ (5-f-SHAKE) 12.33 291.77 12.29
SPHINCS+ (5-s-SHAKE) 597.97 6, 939.57 9.36

RSA 3,072 (SHA-2) 1, 145.5 8.78 0.095

10 Detailed Performance Analysis

We benchmarked the performance of CROSS on an AMD Ryzen 5 Pro 3500U , clocked at 2.1GHz, with
8GiB of DDR4. The computer was running Debian GNU/Linux 12, and the benchmark binaries were
compiled with gcc 12.2.0 (Debian 12.2.0-14). The computation times are measured in clock cycles, the
clock cycle count has been gathered employing the rtdscp instruction, which performs instruction fenc-
ing. All numbers of clock cycles reported were obtained as the average of 10k runs of the same primitive.
All the timings for CROSS were taken with respect to the current AVX2 optimized implementation.

We report in Table 5 the required number of clock cycles to compute the Keygen, Sign and Verify
signature algorithms. We also report, to provide the means of a comparison, the number of clock cycles
taken to run the SPHINCS+ signature scheme, as provided by the eBACS platform [15], benchmarking
reference. The timings for SPHINCS+ refer to its current best optimized version. For CROSS the “f”
letter in the parameter set denotes a “fast” optimization corner, “b” the balanced one and “s” denotes
a short (signature) optimization corner. SPHINCS+ does not offer a balanced option.

The reported timings show how CROSS achieves significantly better computational performance than
SPHINCS+: in particular, considering NIST security category 1 as an example, the speed-optimized
parameter sets for CROSS-R-SDP yield an ≈ 119× faster signature primitive, and an ≈ 11× faster
verification primitive. CROSS-R-SDP(G) parameter configurations bring the speed advantage to ≈ 162×
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Table 6: Main memory footprints of the runtime-memory optimized version of CROSS

NIST Parameter Reference Size Compact Size Gain
Cat. Set (kiB) (kiB) (x)

1

CROSS-R-SDP-f 152.38 28.54 5.34
CROSS-R-SDP-b 218.89 23.34 9.38
CROSS-R-SDP-s 696.38 26.77 26.01

CROSS-R-SDP-(G)-f 111.20 20.66 5.38
CROSS-R-SDP-(G)-b 163.46 18.30 8.93
CROSS-R-SDP-(G)-s 548.62 23.85 23.00

3

CROSS-R-SDP-f 334.92 57.88 5.79
CROSS-R-SDP-b 342.26 52.35 6.54
CROSS-R-SDP-s 1213.26 46.46 26.11

CROSS-R-SDP-(G)-f 240.54 38.73 6.21
CROSS-R-SDP-(G)-b 259.32 35.60 7.28
CROSS-R-SDP-(G)-s 875.84 38.27 22.89

5

CROSS-R-SDP-f 596.95 98.71 6.05
CROSS-R-SDP-b 857.85 76.21 11.26
CROSS-R-SDP-s 1639.82 73.74 22.24

CROSS-R-SDP-(G)-f 424.21 65.26 6.50
CROSS-R-SDP-(G)-b 475.33 57.46 8.27
CROSS-R-SDP-(G)-s 1231.35 56.95 21.62

for signing, and gain a factor of 16.5× for verification.
Furthermore, the signature-size optimized parameters for CROSS still provide faster signature tim-

ings with respect to the SPHINCS+ parameter sets optimized for fast operation, for all NIST security
categories.

Finally, one noteworthy point, is that the CROSS signature algorithm is faster than RSA for the
equivalent (pre-quantum) security parameters for RSA, when considering the fast and balaced options
for RSDP and all options for RSDP-(G).

To provide a concrete grounding for practical use, we observe that CROSS-R-SDP, for NIST security
category 1 achieves sub-millisecond signature creation (0.61ms) and verification (0.37) ms on the platform
we employed for the benchmarks. CROSS-R-SDP(G) performs even better, signing in 0.44ms, and
verifying in 0.26ms.

Concerning the computational load of CROSS-R-SDP, about ≈ 60% of the time taken by the signature
primitive is spent computing either hashes or CSPRNGs. This computational load profile is essentially
the same during verification, as a result, in both cases, of the optimization of the arithmetic operations
with AVX2 vector instructions.

Concerning embedded systems oriented implementations, a stringent metric is the one of the main
memory footprint. Indeed on microcontroller platforms the required stack size (plus eventually global
variables, if present) can prevent the use of a cryptographic primitive. To provide a first datapoint,
we optimized CROSS to reduce the required stack size, recomputing mathematical objects which are
generated from CSPRNGs whenever they are needed by the computation, while keeping only the seeds
themselves in memory. Similarly, the leaves of the seed tree are computed performing an in-order visit of
the data structure, reducing the amount of data being kept in main memory. Table 6 reports the figures
of the compact memory footprint version of CROSS with respect to the ones required by the reference
implementation. As it can be seen, all parameter sets for CROSS can be fit in the main memory of the
STM32F407VG microcontroller (which is endowed with 192kiB of memory, split into a 64 and a 128 kiB
bank), currently employed by the the pqm4 benchmarking project.

11 Known Answer Test Values

Known Answer Tests (KAT) have been generated and are a separate archive. The submission package
contains facilities (in the Additional Implementation folder) to regenerate them, following the instructions
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in the README file. We include the SHA-2-512 digests of the KAT requests and responses in the following.
a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_106_32742.req

5b55420b902f9345a11485e9495fbdc852d98045173e6215681a465128847ee9b37b245d0518a68b5dcf9043125f70c91c690f5f2df51113cc36d4134c26af6d PQCsignKAT_106_32742.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_106_40134.req

537584a12c1239cf3287f54e51dca67311e17e49165eb0f9f534e5f7420a0e98f5739ee043d9f98ecf193b112314b27a98d4700bd06b597b5d48a5f7074ea553 PQCsignKAT_106_40134.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_106_48938.req

742c7f0aa4df43c2cb56c6ff76116be456158b193e934780bc4f281c465aa87575cded0090b70763ffe3bd50e4ce413b79ffc0bc54f0c57b74ca8f90f35cd122 PQCsignKAT_106_48938.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_115_23642.req

1984e14336d9460c2ac79e06d6828a934fb2bc935600e88e721e52558802a94868ae131bd3140ed074dc97441d85787d92273cfddbaed6a539d599d38524f8d6 PQCsignKAT_115_23642.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_115_28222.req

21abccf9e276d1df5b88edecf1366f91c8664756238b3ac50cd0bda72f5ced7c4a02a4d6684433ce6d8f032bbfb960a0ad7ee4a5ce16d63524ea894a645a864a PQCsignKAT_115_28222.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_115_42682.req

e072ce22049c295a619d9597f3a5b521af29806238407b104fc3d50e7a26bb29729729accc61612c3feee6183d885f6997cd2561da4d4ac5a87c80c70a2fce44 PQCsignKAT_115_42682.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_153_43592.req

f559179bcd818b7ec8b8a1980704efeede07b84653807ade06bc71d8cd9528a24a97e6dd467b86364a34ad0fc6faa5ff72317cce9cb8bc28563017834f429254 PQCsignKAT_153_43592.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_153_51056.req

5f22615c526538dec0d512688591d420b3dadef7b8ab2da98a2652c6422f16da3097219982494566a9b74867c5ef1b003be824d6090e67e849966ef0d4bea393 PQCsignKAT_153_51056.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_153_76298.req

9560d97839762a166e2a3b8b03eb2cfd8b93e8c89b97c77916f6e91cdf236c7e3951ed4b78109ef4fe854212b21145ad58541820092d3d44b76cc343d5e62e58 PQCsignKAT_153_76298.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_54_12472.req

0a34869a6d915544498bc8bc86676955f416a6291a5c415e9acc5c21765e27f6ede05fd43f77ee39312b649d7a7ba3da572a947bfb9f472e0a68e45bb0563ecb PQCsignKAT_54_12472.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_54_7956.req

6909456ddf8723c414ec2457bb5af53686fe543a78c266b032bab8a2e078aec47586705277ed0f9590351cf17a874c5a3889fa849192ac02173d06ed0b168bb2 PQCsignKAT_54_7956.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_54_9236.req

dcc714d0d410b3b49ccc8cd8e475fe2c3391855c360cf450d1ddfbbde2dc7d0703310e24097df291bf4359799cb2188602998e48e54e28644d1bae588dc21b14 PQCsignKAT_54_9236.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_77_10080.req

9c960f96ad3ff85c8ee7c07a59defc0a8cf87dfc54eed27063ba625477f64f61abacf358c01bcf1e8003d244c93ff8c9f6cea85b60fdf2908e33de5fbd283a72 PQCsignKAT_77_10080.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_77_12912.req

032a46864fc4d8033f73ad939368acb8d869cf81db9efcf8368cfd66b649907da3e38033089e5211f453f177f10cce222d49417f683725770b544dd85b069080 PQCsignKAT_77_12912.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_77_19152.req

45778fe0a66179025ef0ba16506bbf90ed5670eedd4cfa5869b8355dae74b6d3ad416bb09ef4438cff9cc51dcdce094c1672312e8c49aa8f87898d64a7ea6988 PQCsignKAT_77_19152.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_83_18188.req

def72418b9ce33f8830ee69f5ec432f2de718209c6ed014907ae14ddcb2466e33d55f912d6c29bc473af2a90975bc84457bb47ac9e0a6f9fa14aa298e377bdda PQCsignKAT_83_18188.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_83_23380.req

e8b39fb9cd957357361b3292f2193241fdf069049945c6f19338e2e43d52e5188502a02f78101fb58dcb8d133fcac7181ff97b3b4aa6404cbf354ce6efa1fb98 PQCsignKAT_83_23380.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 PQCsignKAT_83_27404.req

bc32d6b6ef81db2d91101f3ad64286d11833ea8abe656cd0105089690c322935df5b6539fa4bbd856d07d056e29a56979258adb272a4e6a58c467a25171f1352 PQCsignKAT_83_27404.rsp

12 Advantages and Limitations

Advantages

• Due to the usage of restricted errors and the resulting full Hamming weight, generic decoders in
this setting have an increased cost compared to generic decoders in the Hamming metric. As our
thorough security analysis shows, this allows us to choose smaller parameters to achieve the same
security level. We have adapted the best-known techniques from classical ISDs and subset-sum
solvers.

• By leveraging a ZK protocol, we do not require any code with algebraic structure and thus do not
rely on any indistinguishability assumption. The used code is chosen uniformly at random and is
made public. Since the secret is given by the randomly chosen restricted error vector, an adversary
faces an NP-hard problem: either R-SDP or R-SDP(G).

• The ZK protocol CROSS-ID follows the well-established structure of CVE [26], which is a well-
known and studied protocol. It can also be classified as a q2-Identification protocol, which imme-
diately implies EUF-CMA security [41].

• The choice of a ZK protocol allows for a flexible choice of parameters, trading performance for
signature size and vice versa.

• We considered the attack to signatures derived from 5-pass ID protocols reported in [43] and
performed the corresponding analysis when fixed-weight challenges are employed. We considered
the computational improvements of this work and designed the system parameters conservatively.

• Restricted error vectors and their transformations can be compactly represented, which significantly
reduces the signature sizes compared to other settings, such as when using fixed Hamming weight
error vectors.

• The fully random parity-check matrix can be derived on the fly from a small seed using a CSPRNG.
This allows us to compress the public key to < 0.1 kB, which means the signature scheme is suitable
for highly memory-constrained devices such as smartcards. Furthermore, the small public key size
and sub-10 kB signature sizes endorse its use in X.509 certificates.

• The transformations of restricted vectors do not require permutations, which ensures a simplified
constant-time implementation.

• Since roughly half of the operations are performed in a smaller field, Fz, the computations there
will be less expensive than in other schemes which use the full ambient space.
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• Due to the order of the ambient spaces Fp and Fz being either a Mersenne prime or close to one,
CROSS enjoys fast arithmetic and achieves fast signature generation and verification.

• Since CROSS only chooses two different ambient spaces, namely (p = 127, z = 7) and (p = 509, z =
127), the code size and area of its realization are more compact concerning schemes that require
tailored arithmetic for each NIST security category.

• For the R-SDP variant of CROSS, the choice of z is small enough to allow expensive operations to
be performed via a constant-time table lookup, as the entire table fits into a (64-bit) register.

• CROSS only requires simple operations, such as symmetric primitives (CSPRNGs and crypto-
graphic hashes) and vector/matrix operations among small elements. This also allows for a straight-
forward constant-time implementation of the scheme.

• The nature of the arithmetic operation in CROSS allows efficient vectorization with ISA extensions
such as Intel’s AVX2: the computation of the arithmetic operations, when vectorized, reduces the
amount of time spent in them to a minority in the overall signature time

• Only a single standardized primitive (SHAKE, as per FIPS-202) is required in each CROSS imple-
mentation, reducing both hardware and software implementation complexity.

Limitations

• The achieved signature sizes are still in the range of 8 kB for NIST level I, which is larger than
the standardized signatures Falcon and Dilithium but matches that of SPHINCS+. This range of
signature sizes is to be expected from a signature scheme derived through a ZK protocol.

• The restricted syndrome decoding problem is relatively new [7], but closely related to the classical
syndrome decoding problem and the subset sum problem, both of which are well studied in literature
[12, 13]. Due to this relation, the best-known solvers for R-SDP [8, 23] are modifications of the
best-known solvers for SDP and the subset sum problem.
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the Véron and AGS code-based identification schemes. In 2021 IEEE International Symposium on
Information Theory (ISIT), pages 55–60. IEEE, 2021.

[18] Ward Beullens. Sigma protocols for MQ, PKP and SIS, and fishy signature schemes. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 183–
211. Springer, 2020.
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