
CROSS
Codes and Restricted Objects Signature Scheme

Submission to the NIST Post-Quantum Cryptography

Standardization Process

Algorithm Specifications and Supporting Documentation

Version 2 - January 31, 2025

Marco Baldi, Polytechnic University of Marche, Department of Information Engineering

Alessandro Barenghi, Politecnico di Milano, Department of Electronics, Information and Bioengineering

Michele Battagliola, Università degli Studi di Trento, Department of Mathematics

Sebastian Bitzer, Technical University of Munich, Institute for Communications Engineering

Marco Gianvecchio, Politecnico di Milano, Department of Electronics, Information and Bioengineering

Patrick Karl, Technical University of Munich, Chair of Security in Information Technology

Felice Manganiello, Clemson University, School of Mathematical and Statistical Sciences

Alessio Pavoni, Polytechnic University of Marche, Department of Information Engineering

Gerardo Pelosi, Politecnico di Milano, Department of Electronics, Information and Bioengineering

Paolo Santini, Polytechnic University of Marche, Department of Information Engineering

Jonas Schupp, Technical University of Munich, Chair of Security in Information Technology

Edoardo Signorini, Telsy S.p.A.

Freeman Slaughter, Clemson University, School of Mathematical and Statistical Sciences

Antonia Wachter-Zeh, Technical University of Munich, Institute for Communications Engineering

Violetta Weger, Technical University of Munich, Department of Mathematics

Submitters: The team above, with names listed alphabetically, is the principal submitter. There are

no auxiliary submitters.

Inventors/Developers: Same as the principal submitter.

Implementation Owners: The submitters.

Email Address (preferred): info@cross-crypto.com

Postal Address and Telephone:

Paolo Santini

Polytechnic University of Marche

Department for Communications Engineering

Brecce Bianche 12

60131 Ancona

Italy

Tel: +39 071 2204128

Backup Contact Telephone and Address:

Sebastian Bitzer, Violetta Weger

Technical University of Munich

Institute for Communications Engineering

Theresienstraße 90

80333 Munich

Germany

Tel: +498928929051

Signature: (See “Statement by Each Submitter” or “Cover Sheet”)

Contents

1 Design Rationale and Notation 5

1.1 CROSS in a Nutshell . 5

1.2 Notation . 5

1.3 Basics . 6

2 Procedural Description of CROSS-ID and CROSS 10

2.1 CROSS-ID . 10

2.2 CROSS Protocol . 13

2.2.1 Key Generation . 13

2.2.2 Signature Generation . 14

2.2.3 Verification . 18

2.3 Auxiliary Primitives . 20

3 Security 22

3.1 Hardness of Restricted Decoding . 22

3.1.1 Underlying Hardness Assumptions . 22

3.1.2 Combinatorial Solvers for R-SDP . 23

3.1.3 Algebraic Solvers for R-SDP . 24

3.1.4 Solvers for R-SDP(G) . 24

3.2 Security of the Protocol . 25

3.2.1 Forgery Attacks . 25

3.2.2 Security Proof . 26

4 Parameters and Expected Security Strength 26

5 Implementation Techniques 27

5.1 Symmetric Primitives . 27

5.2 Seed- and Merkle Tree . 30

5.2.1 Tree Structures . 30

5.2.2 Tree Algorithms . 32

5.3 Parallelization of SHAKE . 39

5.4 Packing and Unpacking: . 40

5.5 Efficient arithmetic for F7, F127, and F509 . 42

5.6 Implementation Attacks . 43

6 Detailed Performance Analysis 43

7 Known Answer Tests 44

8 Advantages and Limitations 45

9 Bibliography 46

CROSS NIST Submission 2025

Change Log

This section summarizes the changes corresponding to different CROSS specification documents.

Version 2: We have changed the specification document to provide an operative summary of

the CROSS features, together with operative descriptions and benchmarks, with the intent of

improving readability. To this end, we have moved detailed explanations on

• combinatorial and algebraic attacks from Section 3.1,

• EUF-CMA security proof and forgery attacks from Sections 3.2, 3.2.1

to a separate security guide, available at https://cross-crypto.com/. Additionally, we re-

duced the amount of mathematical and cryptographic background given in Section 1.

We unified the notation across the entire document, both in sequence diagrams and the proce-

dural descriptions of key generation, signing, and verification.

With respect to version 1, version 2 of the specification contains the following changes:

Protocol and parameters

1. We present a security proof for the ZK protocol and the proof of EUF-CMA security of

the CROSS signature scheme in [39].

2. We include a novel forgery attack in Section 3.2.1 derived from [9]. This attack does not

depend on R-SDP, nor on R-SDP(G), but only on the non-interactivity of the transformed

ZK protocol. This version of the attack improves upon the forgery presented in the

previous versions of this specification by exploiting, in a better way, the use of fixed-

weight challenges.

3. Due to the novel forgery attack, we present novel parameters in Section 4. This results in

an increase in signature size for the small parameter sets of 12% to 24%. The signature

sizes for the balanced parameter increase by up to 7% depending on the parameter set

while decreasing up to 7% for some other parameter sets due to a more precise bound

for the attack cost. This bound also results in a decrease in signature size for the fast

parameter sets of up to 3.3%.

4. An overview of combinatorial solvers and the algebraic solver of Beullens, Briaud, and

Øygarden [15] is given in Section 3; for more details, see [39].

5. We are using a new bound for the size of the seed path and Merkle proof, see Section

2.2.2. The new bound now involves also the Hamming weight of the binary representation

of the number of rounds t and is proven to be tight.

1

https://cross-crypto.com/

CROSS NIST Submission 2025

6. In determining our parameters, we now take into account, as a lower bound to a single

forgery attempt, the cost, in Boolean operations, of a single SHAKE computation. This

allows us to match the security requirements of category 1, 3, and 5 considering cheating

probabilities higher than 2−128, 2−192, and 2−256, respectively, by an factor equal to the

ratio between the Boolean operation cost of an AES computation, and the one of a SHAKE

computation.

Implementation

1. We moved onto a homogeneous strategy to perform domain separation across the SHAKE

calls which CROSS employs as both CSPRNG and Hash. We fixed issues in the implemen-

tation with respect to domain separation and improved portability among platforms with

different endianess. We furthermore revised the rejection sampling strategy and fixed a

problem where the required randomness was underestimated.

2. We present a novel section, Section 5.6, discussing side-channel attacks and countermea-

sures.

3. We revised the truncation structure for the seed tree and now employ the same structure

for the seed- and Merkle trees as discussed in Section 5.2.1.

4. We slightly changed the order of elements in resp and sampling ofM andH for R-SDP(G)

to benefit implementation optimizations.

5. A SIMD implementation of Keccak is used to speed up in-round commitment hashing,

Merkle tree hashing, and seed tree computations (see Section 5.3).

6. Reductions modulo p = 509 are now performed using Barrett’s method (see Section 5.5).

2

CROSS NIST Submission 2025

Version 1.2 Version 1.2 includes a set of minor updates with respect to Version 1.1:

1. The lengths of the required amount of randomness to be drawn from the CSPRNGs has

been corrected in the codebase.

2. Two additional domain separation constants (c and dsc) are employed in computing cmt0,

cmt1 and in the CSPRNG for transformation sampling.

3. The size of the signatures has been updated in Table 4 (λ bits were missing).

4. A new NP-hardness proof of R-SDP is included.

Version 1.1 With regards to Version 1.0, the following changes have been made to this second

version.

1. Improved security analysis for R-SDP(G): In Section 3, we consider an improved solver

for the R-SDP(G), and we updated the parameters for CROSS R-SDP(G) accordingly.

The parameters for the CROSS R-SDP instances are unchanged.

2. To prevent collision attacks on CSPRNG seeds, we include salting and a unique index per

CSPRNG instance in each round of the signature. We detail these tweaks in the procedural

description of CROSS.

3. To add hedging against multikey attacks we raise the length of the seeds for keypair

generation to 2λ: this allows to prevent collision attacks relying on the collection of 2
λ
2

keypairs. We updated Algorithm 1, Algorithm 2, and Algorithm 3 accordingly.

4. We propose parameters for an additional optimization corner that aims for even lower

latency than the previous fast optimization corner (at the cost of larger signatures). While

previous parameter sets featured a small and fast optimization targets, the new security

categories provide a small, balanced (formerly fast), and fast version.

5. We report updated versions of Algorithm 1, Algorithm 2, and Algorithm 3, where we

revised the generation of the V,W, values. Doing so saves a CSPRNG call during key

generation, 2t CSPRNG during signature, and 2w CSPRNG calls during verification, at no

security margin loss.

6. We revised the CSPRNG implementation strategy, extracting always a constant amount

of pseudorandom bits from each CSPRNG call. We make this possible, in the rejection

sampling scenarios, considering the amount of required bits so that the CSPRNG extraction

fails with probability 1
2λ
. We detail this CSPRNG strategy in Section 5.1. This approach

makes constant time implementations easier.

7. We now consider the objects in their bit-packed representation when they are employed

as the inputs of cryptographic hashed, reducing the amount of required computation.

3

CROSS NIST Submission 2025

8. We switched from SHA-3 as a cryptographic hash to SHAKE with a 2λ bit extracted

string. This improves on the overall speed, while keeping the same security margin (as

the bottleneck for attacks was SHA-3 collision resistance, which matches the one of the

appropriate SHAKE with a 2λ bit output). We provide details in Section 5.1.

9. We report the performance figures from an optimized implementation for the Intel AVX2

instruction set in Section 6.

10. We report the memory footprints of a stack-size optimized portable implementation, fitting

all our parameter sets on a Cortex-M4-based microcontroller, namely the STM32F407VG

present on the STM32F4 Discovery board by STMicroelectronics employed by the pqm4

benchmarking project in Section 6.

4

CROSS NIST Submission 2025

1 Design Rationale and Notation

1.1 CROSS in a Nutshell

CROSS is a signature scheme based on the hardness of decoding restricted vectors [4, 5]. CROSS

is obtained by transforming an interactive zero-knowledge protocol (CROSS-ID) into a signature

scheme via the Fiat-Shamir transform.

Restricted vector decoding: The computationally hard problem underlying CROSS consists

in decoding a given syndrome into a restricted vector. CROSS instances use one of the following

two types of restrictions.

– Vectors having only entries in E, a cyclic subgroup of the multiplicative group F∗
p. The

associated problem is called Restricted Syndrome Decoding Problem (R-SDP).

– Vectors with entries in G, a subgroup of En. The associated problem is called Restricted

Syndrome Decoding Problem with Subgroup (R-SDP(G)).

The security of these problems has been studied in [4, 5, 15, 16]; notably, the decisional versions

of R-SDP and R-SDP(G) were proven to be NP-complete.

Zero-knowledge and Fiat-Shamir transform: CROSS is obtained by applying the Fiat-

Shamir transform to an interactive Zero-Knowledge (ZK) proof of knowledge. The used ZK

protocol, called CROSS-ID, is an adaption of the 5-pass protocol CVE proposed in [19].

Fast and simple: CROSS has been designed striving for simplicity and computational ef-

ficiency. The underlying finite fields are chosen such that efficient modular arithmetic for

Mersenne primes can be largely employed. Furthermore, choosing the same finite fields for

all security categories allows the reuse of a single set of hardware units to accelerate the under-

lying operations. The proposed parameters target three applicative scenarios having a fast, a

balanced, and a small-signature variant. CROSS relies only on well-studied signature size op-

timization techniques, such as Puncturable Pseudo-Random Functions (PRFs) based on GGM

trees [27] (to which we will also refer as seed trees) and Merkle trees.

1.2 Notation

The mathematical symbols employed in this specification are listed in Table 1.

We adopt the following mathematical conventions:

- vectors over Fp are in bold letters, e.g., e ∈ En ⊂ Fn
p ;

- matrices over Fp are in bold capital letters, e.g., H ∈ F(n−k)×n
p ;

- vectors over Fz are in bold overlined letters, e.g., e ∈ Fn
z and eG ∈ Fm

z ;

- matrices over Fz are in bold overlined capital letters, e.g., M ∈ Fm×n
z ;

- concatenation between x, y is denoted as x | y;

5

CROSS NIST Submission 2025

Table 1: Mathematical symbols

Symbol Meaning

p, z Prime numbers, z < p

Fp Finite field with p elements

F∗
p Multiplicative group Fp \ {0}

Fz Finite field with z elements

E Cyclic subgroup of (F∗
p, ·), with generator g of order z

⋆ Component-wise multiplication

G Subgroup of (En, ⋆) of size zm

Idℓ Identity matrix of size ℓ× ℓ

n Code length and length of restricted vectors

m Size of the subgroup G is zm, m < n

k Code dimension, with k < n

λ Security parameter

t Number of rounds

w Weight of the second challenge

B(t,w) Hamming sphere of vectors in Ft
2 with radius w

HW(t) Hamming weight of the binary representation of t

- in algorithms, we write a←− b to denote that a is assigned the value b and a
$←− A denotes

that a is drawn uniformly at random from A.

The main cryptographic notation is reported in Table 2.

1.3 Basics

Restricted vectors: CROSS is based on the so-called Restricted Syndrome Decoding Problem

(R-SDP), an NP-complete problem that can be seen as a variant of the classical Syndrome

Decoding Problem (SDP).

Let Fp be the finite field with p elements and let g ∈ F⋆
p of prime order z. A restricted vector

has all entries in E = ⟨g⟩ = {gi | i ∈ {1, . . . , z}} ⊆ F⋆
p.

The R-SDP is then defined as: Given a parity-check matrix H ∈ F(n−k)×n
p , a syndrome s ∈ Fn−k

p

and a restricted set E, find a vector e ∈ En such that s = eH⊤.

The rationale behind the restriction is to make use of the fact that restricted vectors together

with componentwise multiplication are isomorphic to vectors in Fn
z with addition, i.e., (En, ⋆) ∼=

(Fn
z ,+), where ⋆ denotes componentwise multiplication. We often write ge, where e ∈ Fn

z , to

denote (ge1 , . . . , gen). Additionally, for v ∈ En with exponent v ∈ Fn
z , we denote by v−1 the

restricted vector with exponent −v.

We also consider a specialized version of R-SDP, called R-SDP(G), in which solutions are

required to live in a subgroup (G, ⋆) ≤ (En, ⋆) where

G = ⟨a1, . . . ,am⟩ =
{
⋆mi=1a

ui
i | ui ∈ Fz

}
,

6

CROSS NIST Submission 2025

Table 2: Notation employed for inputs, outputs and cryptographic components.

Symbol Meaning

Msg Message to be signed

sk Secret key

pk Public key

Sgn Signature

Hash A cryptographic hash function with codomain {0, 1}2λ

Salt binary string of length 2λ randomly drawn for each signature
generation

Seedx Seed used to draw x

digestx Digest of a cryptographic hash function on x

cmt0[i], cmt1[i] Commitments for round i

chall1 First challenge vector in (F⋆
p)

t

chall2 Second challenge vector in B(t,w)

resp[i] Response to the second challenge for round i

T A tree structure where each node consists of a λ- or 2λ bit
string depending on its context.

T ′ A reference tree structure where each node consists of a sin-
gle bit.

CSPRNG–S (·) A cryptographically secure pseudo-random number genera-
tor with output in the set S.

with |G| < |En| = zn.

The subgroup G can be represented in a compact way by collecting the exponents ai ∈ Fn
z of

the generators ai into a matrix. That is, we define the matrix M ∈ Fm×n
z as

M =

(a1)1 · · · (a1)n
...

...

(am)1 · · · (am)n

 =

a1
...

am

 .

Hence, contrary to vectors ge ∈ En, which allow any exponent e ∈ Fn
z , we now only allow

exponents e ∈ ⟨M⟩, a code of dimension m in Fn
z .

Similarly to the restriction E, we want to make use of the isomorphism G ∼= Fm
z . Instead of

sending e ∈ G, or e ∈ ⟨M⟩, we can send the information vector eG ∈ Fm
z . That is e = eGM

and e = ge ∈ G.

The reasoning for this restriction is that restricted vectors e ∈ En, respectively e ∈ G, have

very compact size, namely n log2(z), respectively m log2(z), bits.

The employed ZK protocols also involve linear transitive maps v : E → E, respectively vG :

G → G. As E and G act transitively on themselves. That is, v(e) = e ⋆ e′, for some e′ ∈ En.

Hence, in order to send v it is enough to send e′, which is such that e′ = ge
′
. Thus, also v,vG

have size n log2(z), respectively m log2(z), bits.

7

CROSS NIST Submission 2025

The hardness of solving R-SDP and R-SDP(G) relates directly to that of SDP. The most

efficient solvers are Information Set Decoding (ISD) algorithms. We discuss the security of

R-SDP, respectively R-SDP(G), in Section 3 and provide the details in the security guide [39].

In particular, we provide an analysis specifically tailored to the recommended choices for p and

z.

Due to the isomorphism (En, ⋆) ∼= (Fn
z ,+), CROSS also profits in terms of performance, as most

computations can be performed over Fz.

The subgroup E ≤ F∗
p is generated by the public parameter g ∈ F∗

p and is constant: g = 2 for

R-SDP, or g = 16 for R-SDP(G).

Zero-knowledge and Fiat-Shamir transform: Using ZK protocols and the Fiat-Shamir

transform to create a signature scheme comes with a long history and strong security aspects.

In addition, this approach typically leads to small public key sizes.

The ZK protocol CROSS-ID is an adaption of the classical CVE protocol [19]. CROSS-ID is a

5-pass protocol, which can be classified as a q2-Identification scheme.

The CROSS-ID protocol follows the same rationale as CVE:

- The public key consists of a syndrome s ∈ Fn−k
p , a seed Seedpk to compute a random

parity-check matrix H ∈ F(n−k)×n
p , as well as a random matrix M ∈ Fm×n

z which is used

to generate the exponents of the vectors in G.

- The secret is given by a restricted vector e ∈ En, respectively by e ∈ G.

- Within one round of the protocol, the signer either proves the syndrome equation eH⊤ = s

or the restriction e ∈ En, respectively e ∈ G.

- This invokes two commitments, one to prove the syndrome equation, cmt0, and a second

to prove the restriction, cmt1.

- The protocol also requires two challenges, the first being chall1 ∈ F⋆
p and the second

chall2 ∈ {0, 1}.

The protocol is repeated for t rounds and made non-interactive using the Fiat-Shamir transform.

To do so, the signer generates the first challenge as the hash of the t commitments cmt0, cmt1

and the message Msg, that is chall1 = Hash(Msg, cmt0, cmt1). The second challenge is similarly

generated using also chall1 and its responses y[i] ∈ Fn
p . The rationale of the Fiat-Shamir

transform is also depicted in Figure 1 and the protocol is described in full details in Section 2.1.

The signature consists of the transcripts of each of the rounds.

As the responses have different sizes, we reduce the signature sizes using weighted challenges.

In the balanced and small versions, we also use a Merkle tree to reduce the cost of sending the

commitments cmt0.

We discuss the security of the protocol and the scheme resulting after the Fiat-Shamir transform,

including a novel forgery attack, in Section 3.2.1 and provide the proofs in the security guide

8

CROSS NIST Submission 2025

Message: Msg

Salt: Salt

Commitment: (cmt0[1], . . . , cmt1[t])

First Challenge: (chall1[1], . . . , chall1[t])

First Response: (y[1], . . . ,y[t])

Second Challenge: (chall2[1], . . . , chall2[t])

Hash

Hash

Figure 1: Flowchart representation of challenges generation in the Fiat-Shamir transformation

[39]. In particular, the resulting signature scheme is EUF-CMA secure (see Theorem 8, as well

as the security guide [39]).

Fast and simple: The compact sizes of the restricted vectors reduce the amount of computa-

tional effort compared to the traditional SDP in the Hamming metric.

In addition, the arithmetic becomes much simpler: roughly half of the arithmetic operations in

CROSS are performed over a smaller field Fz, where we can substitute modular multiplications

with less expensive additions.

We choose p and z to be implementation-friendly values, namely Mersenne primes or close

to Mersenne primes. We keep p and z fixed for all security categories. This allows for the

implementation of only two sets of arithmetic primitives, which reduces the code size (in soft-

ware implementations, where it is critical in Flash-memory-constrained microcontrollers) or the

required silicon area (in hardware implementations).

All primitives in CROSS require only consolidated symmetric primitives (such as CSPRNGs

and cryptographic hashes) and vector/matrix operations among small elements. This allows us

to reduce the amount of implementation footguns [35], i.e., potential points for implementation

errors that lead to vulnerabilities, either directly or through the exploitation of side-channel

information leakage.

The structural simplicity also allows for a straightforward, constant-time implementation of the

scheme, as all operations are natively performed in a memory-access-pattern oblivious way, while

CSPRNGs and hashes are available as consolidated and tested constant-time implementations.

We provide three variants of CROSS to achieve heterogeneous trade-offs:

- CROSS-fast: small values of t (the number of repetitions for the ZK protocol). This variant

aims at fast signature generation and verification and uses squashed tree structures for

performance improvements.

- CROSS-small: large values of t. This variant aims at achieving short signatures and uses

a classical seed- and Merkle tree for signature compression.

9

CROSS NIST Submission 2025

- CROSS-balanced: moderate values of t. This variant comes as a trade-off between the

other two variants and also uses a classical seed- and Merkle tree for signature compression.

CROSS has very small keys: the private key is reduced to its optimal size, i.e., a single random

seed. All the elements in the public key, apart from a short vector over Fp, can also be regen-

erated from a seed with acceptable computational overhead. This results in a public key of less

than 153 B for R-SDP and less than 106 B for R-SDP(G) - for all NIST security categories.

These reduced key sizes allow CROSS keypairs to fit even on constrained embedded devices

where persistent (flash) memory may be scarce, such as in low-end microcontrollers.

2 Procedural Description of CROSS-ID and CROSS

2.1 CROSS-ID

The CROSS-ID is a ZK protocol, which is 5-pass protocol and can be characterized as a q2-

identification scheme, as the first challenge chall1 ∈ F∗
p and the second challenge chall2 ∈

{0, 1}.

The protocol is an adaption of CVE [19] and follows the same principle. The secret is given

by the restricted vector e ∈ En, respectively e ∈ G, which satisfies the syndrome equation

s = eH⊤, and the verifier will either challenge chall2 = 0 asking for a proof that the syndrome

equation is satisfied or chall2 = 1, asking for a proof that the secret vector is restricted. In

order to provide such proof, the prover uses a linear transitive map v : En → En, respectively

v : G→ G.

We present the protocol using R-SDP(G) formulation, as this includes also the R-SDP, by

setting G = En.

Commitments: The prover computes a random e′ ∈ G and u′ ∈ Fn
p from CSPRNG using

a seed. The prover can also compute v ∈ G which is such that v ⋆ e′ = e, i.e., v acts as

transformation on G. The prover then commits to cmt0 = Hash((v ⋆ u′)H⊤ | v), the hash of

the syndrome of the transformed u′ and the transformation v, and to cmt1 = Hash(u′ | e′), the
two vectors computed through CSPRNG from a seed.

First challenge and response: The verifier chooses a challenge chall1 ∈ F∗
p and the prover

computes

y = u′ + chall1e
′ = v−1 ⋆ (u+ chall1e) = v−1 ⋆ u+ chall1v

−1 ⋆ e.

To reduce communication cost, the prover only sends Hash(y).

Second challenge and response: The verifier chooses the second challenge chall2 ∈ {0, 1};
The response is then either formed to verify cmt0, by sending resp = (y,v) or to verify cmt1

by sending resp = Seed which is used to compute e′,u′.

Verification: To recover cmt0 from H, s the prover needs to send y,v. Note that this step

differs from the original CVE, where one directly sends y instead of the digest. The verifier first

10

CROSS NIST Submission 2025

Private Key e ∈ G

Public Key G ⊆ En, H ∈ F(n−k)×n
p , s = eH⊤ ∈ Fn−k

p

PROVER VERIFIER

// Sampling Seed to compute e′,u′

Seed
$←− {0, 1}λ

(e′,u′) ←− CSPRNG(Seed)
// with co− domain G× Fn

p

// Computing v,u, s′

v←− e ⋆ (e′)−1

u←− v ⋆ u′

s′ ←− uH⊤

// Computing commitments

cmt0 ←− Hash
(
s′ | v

)
cmt1 ←− Hash

(
u′ | e′

)
cmt0,cmt1−−−−−−→

// Sampling first challenge
chall1←−−−− chall1

$←− F∗
p

// Computing first response

y←− u′ + chall1e
′

digesty ←− Hash(y)
digesty−−−−−→

// Sampling second challenge

chall2
$←− {0, 1}

chall2←−−−−

// Computing second response

If chall2 = 0, resp←−
(
y,v

)
If chall2 = 1, resp←− Seed

resp−−→

// Verification

If chall2 = 0:
y′ ←− v ⋆ y
s′ ←− y′H⊤ − chall1s
Accept if:

1) Hash(y) = digesty
2) Hash

(
s′ | v

)
= cmt0

3) v ∈ G
If chall2 = 1:

(e′,u′)←− CSPRNG(Seed) // with co− domain G× Fn
p

y←− u′ + chall1e
′

Accept if:
1) Hash(y) = digesty
2) Hash

(
u′ | e′

)
= cmt1

Figure 2: CROSS-ID

checks the validity of the response, i.e., v ∈ G, digesty = Hash(y) and then recovers cmt0 as

cmt0 = Hash(v ⋆ yH⊤ − chall1s | v),

as v ⋆ y = u+ chall1e.

To recover cmt1 the prover only needs to send the seed from which e’,u’ were computed. The

verifier can then check if digesty = Hash(u’ + chall1e’) and recovers cmt1 = Hash(u’ | e’). In

11

CROSS NIST Submission 2025

both cases, the verifier checks that y has been formed correctly.

Communication cost: The transcript for one round consists of cmt0, cmt1, both digests of

length 2λ, chall1 of bit size log2(p − 1), digesty of length 2λ, chall2 which is one bit and

finally the response. If chall2 = 0, the response (y,v) is of size n log2(p) +m log2(z) bits. If

chall2 = 1, the response consists only of Seed of length λ.

Security: The protocol enjoys the same security as the original CVE, namely

Proposition 1. The CROSS-ID protocol in Figure 2 is complete, achieves zero-knowledge and

is sound, with soundness error p
2(p−1) .

The proof can be found in [39].

Weighted challenges: Since the two possible responses have different bit sizes, we use weighted

second challenges in order to reduce the final signature size. The response for chall2 = 1 is

much smaller than the response for chall2 = 0. Thus, we force the second challenge vector

chall2 = (chall2[1], . . . , chall2[t]) ∈ {0, 1}t to be of weight w, i.e., w many rounds i are such

that chall2[i] = 1. The weighted challenges also make the signature size constant and simplifies

constant-time implementations.

Fixing the weight w of the second challenge brings several consequences:

- When w is large, the majority of the rounds have a small response and we can apply

further optimizations, such as a Merkle tree for the t commitments cmt0[1], . . . , cmt0[t]

and a seed tree for the t seeds Seed[1], . . . , Seed[t], which allows to compress the signature

(see Section 2.2.2 and Section 5.2.1). This choice leads to the two variants CROSS-small

and CROSS-balanced.

- When w ∼ t
2 , the protocol is closer to actual t parallel repetitions and using classical trees

will not yield any compression benefits. Instead, we use squashed tree structures that

allow for performance optimizations instead of compression (details in Section 5.3). This

results in the third variant CROSS-fast.

- The constant weight w can be used for forgery attacks, as discussed in Section 3.

Fiat-Shamir transform: We use t parallel executions of the CROSS-ID, where we employ

weighted challenges and apply the Fiat-Shamir transform. To prevent from attacks based on

commitment collisions, we use Salt of length 2λ, to form the commitments as suggested in [20].

Figure 1 summarizes the Fiat-Shamir transform.

The resulting signature scheme is EUF-CMA secure and even enjoys beyond unforgeability

features [3].

Theorem 2. CROSS is EUF-CMA secure.

More details, can be found in Section 3.2.2.

12

CROSS NIST Submission 2025

2.2 CROSS Protocol

CROSS consists of three algorithms: the key generation, KeyGen, in Algorithm 1, the signature

generation, Sign, in Algorithm 2, and the verification, Verify, in Algorithm 3.

2.2.1 Key Generation

The algorithm KeyGen takes as inputs the public data, i.e., the security parameter λ and the

restriction E, parametrized through its generator g.

The algorithm outputs the secret key sk, given by a 2λ bits long seed and the public key, pk

given by a 2λ bit long seed, which is used to derive the random matrices H and M, and the

syndrome s = eH⊤ ∈ Fn−k
p .

We distinguish between the R-SDP and R-SDP(G) variant by colors, that is: steps which are

only required for R-SDP(G) are in orange and on the left of the algorithm, and R-SDP steps

are in teal on the right side.

Algorithm 1: KeyGen()

Input: None
Output: sk : Seedsk: secret key seed;

pk : (Seedpk, s) public key;
Data: λ: security parameter;

g ∈ F∗
p: generator of E;

// Sampling seeds

1 Seedsk
$←− {0, 1}2λ

2 (Seede, Seedpk)← CSPRNG–{0,1}2λ×{0,1}2λ (Seedsk | 3t+ 1)

// Sampling random matrices H and M

3
(W,V)← CSPRNG–Fm×(n−m)

z ×F(n−k)×k
p

(
Seedpk | 3t+ 2)

)
V← CSPRNG–F(n−k)×k

p

(
Seedpk | 3t+ 2

)
4 H← [V |Idn−k]

// Computing e

5

M← [W | Idm]

e← CSPRNG–Fn
z (Seede | 3t+ 3)eG ← CSPRNG–Fm

z (Seede | 3t+ 3)

e← eGM

for j from 1 to n do
6 ej ← gej

// Computing the syndrome s

7 s← eH⊤

// Return secret key sk and public key pk

8 sk← Seedsk
9 pk← (Seedpk, s)

10 return (sk, pk);

Sampling random full-rank matrices: the random matrix H ∈ F(n−k)×n
p of rank n−k is constructed

as H = [V | Idn−k], where V ∈ F(n−k)×k
p is sampled by calling CSPRNG on Seedpk. Similarly, M ∈ Fm×n

z

of rank m is constructed as M = [W | Idm], where W ∈ Fm×(n−m)
z is sampled by calling CSPRNG on

Seedpk.

13

CROSS NIST Submission 2025

Constructing restricted errors: In the R-SDP variant, we sample e ∈ Fn
z from CSPRNG, while in

the R-SDP(G) variant, we first sample eG ∈ Fm
z from CSPRNG, and then compute e = eGM ∈ Fn

z . In

both cases, we then compute the restricted vector e = ge ∈ En ⊂ Fn
p .

Key sizes: The secret key sk has size 2λ, while the public key has size 2λ+(n− k) log2(p) bits, padded

to the next byte multiple as described in Section 5.4.

2.2.2 Signature Generation

Algorithm Sign is given the public data, i.e., the security parameter λ, the restriction E, parametrized

through its generator g, the number of rounds t, the weight of the second challenge w and c a constant

defined as 2t− 1. Sign takes as input the secret key seed sk and the message Msg to be signed.

The algorithm outputs the signature Sgn consisting of Salt, digestcmt, digestchall2 , Path, Proof, and

the second response resp.

Small and balanced version vs. fast version: In the small and balanced version of CROSS we use

a large weight w > t/2, while in the fast version we set w ∼ t/2. The large weight w allows us to make

use of the seed- and Merkle tree to reduce the signature sizes by adding only those tree nodes to the

signature (i.e., the seed Path and Merkle Proof), that the verifier requires to compute the remaining

nodes for signature verification. In the fast version, using these classical tree structures yields no benefit

since w ∼ t/2. Nevertheless, we use trees consisting of only three levels for implementation efficiency

and the Path and Proof nodes only consist of selected leaf nodes of these trees, slightly abusing the

terminology of Path and Proof. For a detailed explanation of this difference, we refer to Section 5.2.1.

Seed path: For proper signature verification, the signer has to reveal w round seeds indicated by the

second challenge chall2[i] = 1. Since Seed[i] are leaves of a seed tree, the number of sent seeds can be

compressed by sending a path, which allows to recover all Seed[i], where chall2[i] = 1. The maximum

number of tree nodes to be sent can be computed according to [17] as

|Path| =
⌊
(t− w) log2

(
t

t− w

)
+ HW(t)− 1

⌋
,

where HW(t) being the Hamming weight of the binary representation of t.

For the fast version, the signature includes exactly w round seeds from the leaves of the tree indicated

by chall2[i] = 1, as a compression is not efficient.

Merkle proof: In the balanced and small versions, with large w, we have to send cmt0[i] w times as

part of the signature. Since w is rather close to t, we can compute the root of a Merkle tree with its

leaves being cmt0[1], . . . , cmt0[t]. Instead of sending all w required commitments, we can send a Merkle

proof such that the verifier can re-compute the Merkle root using the proof nodes and the recomputed

cmt0[i] for chall2[i] = 0. As for the seed path, the maximum number of nodes to include in the signature

is thus

|Proof| =
⌊
(t− w) log2

(
t

t− w

)
+ HW(t)− 1

⌋
.

Again, for the fast version, the signature includes exactly w commitments cmt0[i] for chall2[i] = 1, as a

compression is not efficient.

We distinguish between the R-SDP and R-SDP(G) variant by colors, that is: steps which are only

required for R-SDP(G) are in orange and on the left of the algorithm, and R-SDP steps are in teal on

the right side.

14

CROSS NIST Submission 2025

Algorithm 2: Sign(sk, Msg)

Input: sk: secret key Seedsk ∈ {0, 1}2λ;
Msg ∈ {0, 1}∗: message;

Output: Sgn: signature;
Data: λ: security parameter;

c: constant defined as c = 2t− 1;
g ∈ F∗

p: generator of E;
t: number of rounds;
w: weight of the second challenge;

// Expanding secret key

1 e, eG,H,M← ExpandSK(Seedsk) e,H← ExpandSK(Seedsk)

// Computing the commitments

2 Seed
$←− {0, 1}λ, Salt

$←− {0, 1}2λ
3 (Seed[1], . . . , Seed[t])← SeedLeaves(Seed | Salt)

// Compute v[i] such that v[i] ⋆ e′[i] = e

4 for i from 1 to t do

5

e′G[i],u
′[i]← CSPRNG–Fm

z ×Fn
p (Seed[i] | Salt | i+c) e′[i],u′[i]← CSPRNG–Fn

z×Fn
p (Seed[i] | Salt | i+c)

vG[i]← eG − e′G[i]

e′[i]← e′G[i]M

v[i]← e− e′[i]
6 for j from 1 to n do
7 v[i]j ← gv[i]j

8 u[i]← v[i] ⋆ u′[i]

9 s′[i]← u[i]H⊤

10 cmt0[i]← Hash(s′[i] | vG[i] | Salt | i+ c) cmt0[i]← Hash(s′[i] | v[i] | Salt | i+ c)

cmt1[i]← Hash(Seed[i] | Salt | i+ c)

11 digestcmt0 ← TreeRoot(cmt0[1] | · · · | cmt0[t])
12 digestcmt1 ← Hash(cmt1[1] | · · · | cmt1[t])
13 digestcmt ← Hash(digestcmt0 | digestcmt1)

// Computing first challenge

14 digestMsg ← Hash(Msg)

15 digestchall1 ← Hash(digestMsg | digestcmt | Salt)
16 chall1 ← CSPRNG–(F∗

p)
t
(
digestchall1 | t+ c

)
// Computing first response

17 for i from 1 to t do
18 for j from 1 to n do

19 e′[i]j ← ge
′[i]j

20 y[i]← u′[i] + chall1[i]e
′[i]

// Computing second challenge

21 digestchall2 ← Hash(y[1] | · · · | y[t] | digestchall1)
22 chall2 ← CSPRNG–B(t,w)

(
digestchall2 | t+ c+ 1

)
// Computing second response

23 Proof← TreeProof(cmt0[1] | · · · | cmt0[t] | chall2)
24 Path← SeedPath(Seed | Salt | chall2)
25 for i from 1 to t do
26 if chall2[i] = 0 then

27 resp[i]0 ← (y[i],vG[i]) resp[i]0 ← (y[i],v[i])

resp[i]1 ← cmt1[i]
// Assembling signature

28 Sgn← (Salt, digestcmt, digestchall2 , Path, Proof, resp)

29 return Sgn

15

CROSS NIST Submission 2025

Expanding the secret key: Using Seedsk, the function ExpandSK (details in Section 5, Algorithm 4)

re-generates e and H in the R-SDP version and e, eG,M,H in the R-SDP(G) version. The function

ExpandSK performs exactly the same computations as KeyGen, with the only difference that we do not

need the syndrome s and do not need to compute e ∈ Fn
p .

Preparing the commitment phase: The signer samples an initial seed Seed of λ bits and a salt

Salt of 2λ bits. SeedLeaves (details in Section 5, Algorithm 5 and 6) then takes the Seed and Salt and

internally computes a seed tree with t leaves using CSPRNG with proper domain separation. Within the

tree, each node consists of a λ-bit seed. The function returns the leaves which then serve as round seeds,

Seed[i], for the signature generation.

For each round i, the signer then samples an u′[i] and eG[i], respectively e[i], using CSPRNG on the

Seed[i], Salt and a 2 byte constant i+ c in little endian byte order.

To compute v[i] such that v[i] ⋆ e′[i] = e, the signer computes v[i] = e ⋆ e′[i]−1, which means computing

the exponent v[i] = e − e[i]′. For the R-SDP(G) version, the signer first computes vG[i] = eG − eG[i]
′

and then e′[i] = e′GM.

The signer further computes the auxiliary vector u[i] = v[i] ⋆ u′[i] and its syndrome s′[i] = u[i]H⊤.

Computing the commitments: The commitments are then computed as

cmt1[i] = Hash(Seed[i] | i+ c),

cmt0[i] = Hash(s′[i] | v[i] | Salt | i+ c), for R-SDP

cmt0[i] = Hash(s′[i] | vG[i] | Salt | i+ c), for R-SDP(G).

Computing first challenge: The commitments are hashed together, first all commitments cmt0 in

digestcmt0 and secondly all cmt1 into digestcmt1 , to finally get

digestcmt = Hash(digestcmt0 | digestcmt1).

Therefore, the function TreeRoot takes the commitments cmt0[i] as input, which constitute the leaves of

an internally computed Merkle tree. The Merkle tree is computed from bottom to top where two nodes

are hashed to compute a parent node. Consequently, each node consists of a hash of 2λ bits. The root

of the tree is then returned and represents digestcmt0 .

In the fast version of CROSS, the underlying tree is not a classical Merkle tree, in the sense that two

children are hashed to a parent node. Instead, multiple nodes are hashed to four intermediate nodes

which are finally hashed to a root node. For details, we refer to Section 5.2.1.

To compute the first challenge, the signer then hashes digestMsg, digestcmt and Salt to obtain digestchall1 .

The first challenge is then sampled using CSPRNG on the input digestchall1 .

Computing first response: The signer computes y[i] = u′[i] + chall1[i]e
′[i] and hashes all the y[i] as

well as digestchall1 to obtain digestchall2 .

Computing second challenge: The second challenge chall2 is computed through CSPRNG on the

input digestchall2 .

Computing second response: If chall2[i] = 1, the signer does not need to include any additional

information in a response vector. The verifier can rebuild cmt1[i] for these rounds from Path and cmt0[i]

from Proof.

In order to compute the Path, the function SeedPath takes the definition of the seed tree and the second

challenge chall2 as input and returns the subset of tree nodes, denoted as Path, that are required

16

CROSS NIST Submission 2025

to re-generate all round seeds Seed[i], for which chall2[i] = 1. Due to the tree construction in the

balanced and small versions, we can include inner tree nodes in the Path to some extend, which serves

as a compression mechanism. In the fast version, the Path consists of exactly w leaves selected by

chall2[i] = 1.

To compute the Proof, the function TreeProof is used. It has as input the definition of the previously

mentioned Merkle tree as well as chall2. With those, the function computes a classical Merkle proof

(for the balanced and small versions). That is: it returns the subset of nodes, Proof, in the tree that

is required to re-compute the root given that a verifier has all cmt0[i] with chall[i]2 = 0. In the fast

version, we slightly abuse the term Proof, as it refers to w many leaves cmt0[i] with chall2[i] = 1.

resp consists of two parts resp0 and resp1. If chall2[i] = 0, we set resp[i]0 = (y[i],v[i]) in the R-SDP

version, respectively resp[i]0 = (y[i],vG[i]) for the R-SDP(G) version, and resp[i]1 = cmt1[i]. The

commitment cmt1[i] is added as the provided response y[i],v[i], respectively vG[i], is only able to recover

cmt0[i].

Signatures size: The signature consists of Salt, digestcmt, digestchall2 , Path, Proof and the second

response resp.

Since chall2 has weight w, the response (respectively signature) of the fast version consists of precisely

w times of (Seed[i], cmt0[i]) (in this case the Path and Proof are set exactly to be Seed[i], cmt0[i]) and

(t− w) times of (y[i],v[i], cmt1[i]), respectively of (y[i],vG[i], cmt1[i]).

Each vector in (y,v), respectively (y,vG), requires ideally (n⌈log2(p)⌉, n⌈log2(z)⌉), respectively
(n⌈log2(p)⌉,m⌈log2(z)⌉) bits to store them. To increase usability of these packed vectors, we pack each

vector separately in a byte string, resulting in a small increase in signature size. We denote this Rounding

to the next Byte by R2B(x) = ⌊(x+7)/8⌋·8 in the equations below, indicating the number of bits necessary

for the byte string containing x. Further details on this padding and its implications are provided in

Section 5.4.

For the fast versions, this results in

|Sgn| = 6λ︸︷︷︸
Salt,digestcmt,digestchall2

+w · 3λ︸︷︷︸
resp[i],chall2[i]=1

+(t− w) · (2λ+ R2B (n⌈log2(p)⌉) + R2B (m⌈log2(z)⌉))︸ ︷︷ ︸
resp[i],chall2[i]=0

for R-SDP(G) and

|Sgn| = 6λ︸︷︷︸
Salt,digestcmt,digestchall2

+w · 3λ︸︷︷︸
resp[i],chall2[i]=1

+(t− w) · (2λ+ R2B (n⌈log2(p)⌉) + R2B (n⌈log2(z)⌉))︸ ︷︷ ︸
resp[i],chall2[i]=0

for R-SDP.

In the balanced and small version, the Path, Proof parts do not consist of exactly w entries, but can be

compressed by sending the seed path and classical Merkle proof nodes as explained above. This results

in

|Sgn| = 6λ︸︷︷︸
Salt,digestcmt,digestchall2

+(t− w) (2λ+ R2B (n⌈log2(p)⌉) + R2B (m⌈log2(z)⌉))︸ ︷︷ ︸
resp[i],chall2[i]=0

+ 3λ

(⌊
(t− w) log2

(
t

t− w

)
+ HW(t)− 1

⌋)
︸ ︷︷ ︸

Path,Proof

(1)

for R-SDP(G) and

17

CROSS NIST Submission 2025

|Sgn| = 6λ︸︷︷︸
Salt,digestcmt,digestchall2

+(t− w) · (2λ+ R2B (n⌈log2(p)⌉) + R2B (n⌈log2(z)⌉))︸ ︷︷ ︸
resp[i],chall2[i]=0

+ 3λ

(⌊
(t− w) log2

(
t

t− w

)
+ HW(t)− 1

⌋)
︸ ︷︷ ︸

Path,Proof

(2)

for R-SDP.

Difference to implementation: Whenever we use a variable for counting or indexing, we start counting

from 1 throughout Algorithm 1 to Algorithm 3. In the implementation itself we naturally start counting

from 0. Whenever vectors are used as input for Hash, we use them in their bit-packed form.

2.2.3 Verification

The algorithm Verify is given the public data, i.e., the security parameter λ, the restriction E, parametrized

through its generator g, the number of rounds t, the weight of the second challenge w and c defined as

2t − 1. Verify takes as input the public key pk, the message Msg and the signature Sgn. The algorithm

outputs the Boolean value True/ False depending whether the signature Sgn is valid or not.

We distinguish between the R-SDP and R-SDP(G) variant by colors, that is: steps which are only

required for R-SDP(G) are in orange and on the left of the algorithm, and R-SDP steps are in teal on

the right side.

18

CROSS NIST Submission 2025

Algorithm 3: Verify(pk, Msg, Sgn)

Input: pk: (Seedpk, s) public key;
Msg ∈ {0, 1}∗: message;
Sgn: (Salt, digestcmt, digestchall2 , Path, Proof, resp) signature;

Output: {True, False};
Data: λ: security parameter;

g: generator of E;
t: number of rounds; w: weight of second challenge;
c: constant defined as 2t− 1;

// Recovering public key

1
(W,V)← CSPRNG–Fm×(n−m)

z ×F(n−k)×k
p

(
Seedpk | 3t+ 2

)
V← CSPRNG–F(n−k)×k

p

(
Seedpk|3t+2

)
2 H← [V | Idn−k]

3 M← [W | Idm]
// Computing challenges

4 digestMsg ← Hash(Msg)

5 digestchall1 ← Hash(digestMsg | digestcmt | Salt)
6 chall1 ← CSPRNG–(F∗

p)
t
(
digestchall1 | t+ c

)
7 chall2 ← CSPRNG–B(t,w)

(
digestchall2 | t+ c+ 1

)
// Computing commitments

8 (Seed[i])i:chall2[i]=1 ← RebuildLeaves(Path | chall2 | Salt)
9 for i from 1 to t do

10 if chall2[i] = 1 then
11 cmt1[i]← Hash(Seed[i] | Salt | i+ c)

12

e′G[i],u
′[i]← CSPRNG–Fm

z ×Fn
p (Seed[i] | Salt | i+c) e′[i],u′[i]← CSPRNG–Fn

z×Fn
p (Seed[i] | Salt | i+c)

e′[i]← e′G[i]M

for j from 1 to n do
13 e′[i]j ← ge[i]j

14 y[i]← u′[i] + chall1[i]e
′[i]

15 if chall2[i] = 0 then
16 cmt1[i]← resp[i]1

17

(y[i],vG[i])← resp[i]0 (y[i],v[i])← resp[i]0

Check if vG[i] ∈ Fm
z Check if v[i] ∈ Fn

z

v[i]← vG[i]M

for j from 1 to n do
18 v[i]j ← gv[i]j

19 y′[i]← v[i] ⋆ y[i]

20 s′[i]← y′[i]H⊤ − chall1[i]s

21 cmt0[i]← Hash(s′[i] | vG[i] | Salt | i+ c) cmt0[i]← Hash(s′[i] | v[i] | Salt | i+ c)

// Checking digests

22 digestcmt0 ← RecomputeRoot(cmt0 | Proof | chall2)
23 digestcmt1 ← Hash(cmt1[1] | · · · | cmt1[t])
24 digest′cmt ← Hash(digestcmt0 | digestcmt1)
25 digest′chall2 ← Hash(y[1] | · · · | y[t] | digestchall1)
26 if digestcmt = digest′cmt and digestchall2 = digest′chall2 then
27 return True

28 return False

Recovering public key: The verifier can compute the public key, either consisting of H or M,H in

the case of R-SDP(G), using CSPRNG on Seedpk

19

CROSS NIST Submission 2025

Computing challenges: The verifier computes digestchall1 by hashing digestMsg, digestcmt, Salt.

The first challenge chall1 is then computed by CSPRNG on the input digestchall1 and similarly, the

second challenge chall2 by CSPRNG on the input digestchall2 .

Computing the commitments: The verifier can rebuild the leaves Seed[i], where chall2[i] = 1,

using the function RebuildLeaves. RebuildLeaves uses the Path and Salt from the signature, as well as

the re-computed challenge chall2, and derives the round seeds Seed[i], for which chall2[i] = 1, from it.

Internally it thus computes a subset of the seed tree used during signature generation.

If chall2[i] = 1, the commitment cmt1[i] is computed by

cmt1[i] = Hash(Seed[i] | Salt | i+ c).

Note that we do not need to recover cmt0[i], as we are provided with Proof, able to recover digestcmt0 .

The verifier then reconstructs y[i], by computing u′[i] and either e′[i] in the R-SDP version, or e′G[i] in

the R-SDP(G) version, using CSPRNG on the input Seed[i], Salt, i+ c. The verifier then computes e′[i]

and

y[i] = u′[i] + chall1[i]e
′[i].

If chall2[i] = 0, cmt1[i] is recovered from resp[i]1. For the commitment cmt0[i], the verifier first has to

compute s′[i]. For this, the verifier recovers (y[i],v[i]) from resp[i]0 in the case of R-SDP and (y[i],vG[i])

from resp[i]0 in the case of R-SDP(G). As a first step, the verifier checks if v[i] ∈ Fn
z , respectively if

vG[i] ∈ Fm
z .

The verifier can then construct v[i] and compute y′[i] = v[i] ⋆ y[i] and

s′[i] = y′[i]H⊤ − chall1s.

The commitment is then computed as

cmt0[i] = Hash(s′[i] | v[i] | Salt | i+ c), for R-SDP

cmt0[i] = Hash(s′[i] | vG[i] | Salt | i+ c), for R-SDP(G).

Checking digests: Given y[1], . . . ,y[t], the verifier can recompute all digests, digestcmt0 , digestcmt1 ,

and thus also the candidates for digest′cmt and digest′chall2 .

To recompute digestcmt0 , the function RecomputeRoot is used. It takes the Proof from the signature,

the cmt0[i] that the verifier re-computed (indicated by chall2[i] = 0), as well as the second challenge

chall2. Using that information, RecomputeRoot internally re-computes the root of a Merkle tree. This

root represents digestcmt0 . Like in TreeRoot, the fast version uses a slightly different tree structure, but

similarly to the balanced and fast version, generates a tree root through iterative hashing.

The verifier accepts the signature and outputs True, if the candidates digest′cmt and digest′chall2 coincide

with the sent values for digestcmt and digestchall2 .

2.3 Auxiliary Primitives

CROSS requires two auxiliary primitives: a cryptographically secure pseudo-random number generator

(CSPRNG) and a cryptographic hash function (Hash). All CSPRNGs and Hashes variants employed

in CROSS benefit from the cryptographic guarantees provided by the NIST standard extendable-output

functions (XOFs) SHAKE128 and SHAKE256 (as specified in FIPS202), which in turn exhibit a collision

20

CROSS NIST Submission 2025

Table 3: SHAKE variants employed to realize the auxiliary primitives used in CROSS, for each
NIST category

NIST category CSPRNG Hash

1 SHAKE128 SHAKE128 with 256-bit output
3 SHAKE256 SHAKE256 with 384-bit output
5 SHAKE256 SHAKE256 with 512-bit output

resistance equal to min(2d/2, 2128) and min(2d/2, 2256), respectively, where d is bit-length of their output

result. Table 3 summarizes the choice we made for realizing each CSPRNG and each Hash function to

ensure that CROSS exhibits the security level prescribed by the NIST categories.

Starting from one of the SHAKE variants as per Table 3, which acts as a function from arbitrary length

binary strings to arbitrary length binary strings, we realize the CSPRNGs as follows.

CSPRNG–{0,1}aλ×{0,1}aλ (·), CSPRNG–{0,1}aλ (·) where a is a positive integer: The output of SHAKE is

interpreted as either a single binary string or multiple binary strings, depending on how many of them

are needed, by simply splitting a single output into appropriately sized parts. In case pair of binary

strings is required as an output, its first (leftmost) element is sampled first.

CSPRNG–Fm
z (·), CSPRNG–Fn

z (·): A rejection sampling strategy is employed to turn the binary string

output from SHAKE into sequences of numbers in Fz. The approach extracts sequences of bits, each one

⌈log2(z)⌉ long from SHAKE, reinterprets the output bits as the natural binary encoding of an integer

and, if the resulting value is in Fz, the value is concatenated to the sequence. If the resulting integer is

larger, it is discarded, and a new ⌈log2(z)⌉ long bit sequence is extracted from SHAKE. The procedure is

repeated until enough elements of Fz are generated. The rationale for extracting sequences of ⌈log2(z)⌉
bits from SHAKE and not longer ones, is that ⌈log2(z)⌉ is the amount of binary digits on which all the

numbers modulo z, i.e., all integers between 0 and z − 1 can be encoded. Drawing only such an amount

minimizes the amount of discarded bits from the SHAKE output to generate each value in Fz.

CSPRNG–F(n−k)×k
p (·): The same rejection sampling approach employed to generate multiple elements of

Fz is also employed to generate multiple elements of Fp, with the only difference being that the sequence

of bits extracted from SHAKE at every attempt to generate an element of Fp is ⌈log2(p)⌉ bits long.

CSPRNG–Fm×(n−m)
z ×F(n−k)×k

p (·): Generating a pair of matrices, with elements coming from Fz (the first)

and Fp (the second) is done sequentially by rejection sampling. Therefore, we first generate an element

of Fm×(n−m)
z by generating each of its elements drawing ⌈log2(z)⌉ long bit strings from SHAKE until

m× (n−m) elements of Fz are obtained, and subsequently, we generate (n− k)× k elements of Fp.

CSPRNG–Fm
z ×Fn

p (·), CSPRNG–Fn
z×Fn

p (·): Generating a pair of vectors with elements coming from Fz

(the first) and Fp (the second) is done in the same fashion as generating matrices, i.e., generating their

elements via rejection sampling from the SHAKE output.

CSPRNG–(F∗
p)

t (·): Sampling t elements in F∗
p amounts to sampling uniformly numbers in {1, 2, . . . , p−1}.

We achieve this via rejection sampling with the same strategy as before. Thus, numbers are uniformly

drawn from {0, 1, . . . , p− 2} and deterministically adding 1 to the result.

CSPRNG–B(t,w) (·): Sampling uniformly from the Hamming ball of length t and radius w is done by

observing that taking any of its elements and applying to it a random permutation of the coordinates

(i.e., a permutation of the bits constituting the constant weight string representing it) amounts to drawing

a random element of B(t,w). We adopt this approach, and apply a uniformly randomly picked permutation

over t elements to the binary string 1w0t−w, employing a Fisher-Yates shuffle [25]. The random indices

for the Fisher-Yates shuffle are obtained via rejection sampling from output bits of SHAKE.

21

CROSS NIST Submission 2025

Domain separation: To preserve the domain separation between using SHAKE as CSPRNG and as

Hash, we append a 16-bit integer to each input of CSPRNG and Hash. For values ≥ 215 SHAKE is used

as Hash, whereas each value < 215 denotes a CSPRNG call, respectively. That is, the most significant

bit of this integer denotes the corresponding usage of SHAKE. In addition, we use the lower 15 bits to

separate different CSPRNG and Hash instances, if necessary. In Algorithm 1 to Algorithm 3, the cases

where the lower 15 bits are specifically used for further separation are indicated by the additional integer

in the input of the corresponding Hash and CSPRNG calls.

3 Security

3.1 Hardness of Restricted Decoding

The security of CROSS relies on the hardness of restricted decoding problems. This section gives an

overview of the state-of-the-art solvers for these problems. For further details, we refer to the detailed

security guide [39].

3.1.1 Underlying Hardness Assumptions

CROSS relies on the hardness of restricted decoding problems which are defined as follows.

Problem 3. Restricted Syndrome Decoding Problem (R-SDP)

Let g ∈ F∗
p be of order z, H ∈ F(n−k)×n

p , s ∈ Fn−k
p , and E = {gi | i ∈ {1, . . . , z}} ⊂ F∗

p.

Does there exists e ∈ En with eH⊤ = s?

R-SDP is tightly connected to other well-known decoding problems. In particular, for z = p − 1, we

recover syndrome decoding with full weight; for z = 2, R-SDP is related to the subset sum problem

over finite fields. CROSS uses R-SDP with p = 127 and z = 7. Nevertheless, it is unsurprising that the

decisional version of R-SDP is NP-complete for arbitrary restriction E.

Theorem 4. The decisional version of R-SDP (Problem 3) is NP-complete.

The proof for the NP-completeness can be found in [42], as well as in the security guide [39].

R-SDP can be generalized by considering a subgroup (G, ⋆) ≤ (En, ⋆) as

G = ⟨a1, . . . ,am⟩ =
{
⋆mi=1a

ui
i | ui ∈ Fz

}
,

for some m < n, where the star denotes component-wise multiplication. A variant of CROSS relies on

this generalization, to which we refer as R-SDP(G).

Problem 5. Restricted Syndrome Decoding Problem with subgroup G (R-SDP(G))

Let G = ⟨a1, . . . ,am⟩, for ai ∈ En, H ∈ F(n−k)×n
p , and s ∈ Fn−k

p .

Does there exist a vector e ∈ G with eH⊤ = s?

CROSS uses R-SDP(G) with p = 509 and z = 127.

Uniqueness of solution: For instances with planted solution, the average number of solutions for

R-SDP and R-SDP(G) is computed as 1 + (zn − 1)pk−n and as 1 + (zm − 1)pk−n, respectively. In both

cases, the CROSS parameters are chosen such that this average number of solutions is small.

22

CROSS NIST Submission 2025

3.1.2 Combinatorial Solvers for R-SDP

Combinatorial solvers for R-SDP are inspired by Information Set Decoding (ISD) algorithms [11, 12,

22, 38] for the syndrome decoding problem and the best-known algorithms for the subset sum problem

[10, 30].

A framework for combinatorial solvers: A standard technique in generic decoders is bringing H

into quasi-systematic form

H =

(
Idn−k−ℓ H1

0 H2

)
,

where H1 ∈ F(n−k−ℓ)×(k+ℓ)
p ,H2 ∈ Fℓ×(k+ℓ)

p . This inherently splits the unknown error vector into e =

(e1, e2) ∈ En−k−ℓ × Ek+ℓ. Thus, we get the system of two equations

e1 + e2H
⊤
1 = s1 and

e2H
⊤
2 = s2,

where s1 ∈ Fn−k−ℓ
p , s2 ∈ Fℓ

p. To solve this system, one enumerates solutions e2 of the second equation

e2H
⊤
2 = s2 and checks for each one if the remaining e1 = s1 − e2H

⊤
1 completes it to a valid, i.e.,

restricted, solution. In the following, we discuss methods for the enumeration of e2.

Collision search: Split e2 into (ea, eb). Then, a pair (ea, eb) solves (ea, eb)H
⊤
2 = s2 if and only if

(ea, 0)H
⊤
2 = s2 − (0, eb)H

⊤
2 . To find such pairs, construct the lists

La :=
{
(ea, (ea, 0)H

⊤
2) | xa ∈ E⌊

k+ℓ
2 ⌋
}

and

Lb :=
{
(eb, s2 − (0, eb)H

⊤
2) | xb ∈ E⌈

k+ℓ
2 ⌉
}
,

and perform a collision search [22, 29, 38]. Using a hash table, this costs approximately 2z(k+ℓ)/2+zk+ℓp−ℓ

vector operations.

Multilevel solvers via representations: The best-known solvers for SDP and subset sum problems

generalize the described collision search to multiple levels [10, 11, 28, 30]. The basic idea behind this

improvement is to split e2 = ea + eb, which allows for several representations ea, eb of a given e2.

The effectiveness of such solvers depends on the number of representations, which is determined by the

additive structure of E for R-SDP [5, 16]. The restriction E = {1, 2, 4, 8, 16, 32, 64} used by CROSS has

no additive structure apart from 2e ∈ E for all e ∈ E. As a consequence, only minimal improvements

over the basic collision search seem to be possible.

Shifting E: An R-SDP instance can be transformed into an instance with a modified restriction. Denote

the columns of H as h0, . . . ,hn−1, set x = (x, . . . , x), and define

H̃ =
(
h0 · gi0 , . . . , hn−1 · gin−1

)
and s̃ = s− xH⊤.

Then, ẽ = e ⋆ (gi0 , . . . , gin−1)−x is a solution to (H̃, s̃) with restriction Ẽ = {e− x | e ∈ E}. The shifted

instance can be solved by adapting the algorithms described above.

• Weight distribution: For x ∈ E, the weight of the modified instance follows a binomial distribution

instead of being full weight. Enumerating vectors of reduced weight decreases the cost of the

described solvers.

• Additive structure: For parameters used in CROSS, Ẽ does not possess additive structure when

shifting with x ∈ E. This reduces the effectiveness of representation-based solvers.

23

CROSS NIST Submission 2025

Expected security strength: In Section 4, Table 5 summarizes the costs of the combinatorial solvers

for R-SDP as utilized by CROSS. For these parameters, combining the representation technique with

shifting the error set yields the best performance. For a detailed explanation of the attack parameters

and formulae for bit-complexity estimation, we refer the reader to the security guide [39].

3.1.3 Algebraic Solvers for R-SDP

Similar as other decoding problems [1, 6], algebraic methods can be used to solve R-SDP.

Modeling R-SDP: R-SDP can be modeled as the system of polynomial equations

xH⊤ = s,

xz
i = 1 ∀i ∈ {1, . . . , n}.

Solving complexity: The polynomial system can be solved by computing a Gröbner basis of the

corresponding ideal. State-of-the-art solvers include F4 [23], F5 [24] and the XL algorithms [21]. The

cost of these algorithms has been studied extensively in literature, see, e.g., [18]. A detailed analysis of

the polynomial system given above is provided in [15], which reaches the conclusion that this algebraic

approach is not competitive with the combinatorial solvers.

Hybrid approach: The complexity of algebraic attacks can be improved by hybrid techniques. The

basic idea is to add further equations to the system of polynomials. This reduces the complexity of

solving the system at the cost of repeating the process several times. For CROSS, [15] observes that the

cost of the hybrid attack is optimized by bruteforcing almost zk entries of the error vector.

3.1.4 Solvers for R-SDP(G)

Incorporating G: The set of valid error vectors is {ge | e ∈ ker(H)} for H ∈ F(n−m)×n
z . To incorporate

this into the described collision search, H is brought into quasi-systematic form

H =

(
Idn−k−ℓ H1

0 H2

)
,

where H1 ∈ F(n−k−ℓ)×(k+ℓ)
z ,H2 ∈ F(k+ℓ−m)×(k+ℓ)

z . Then, the lists are constructed as

La :=

{(
ea, (ea,0)H

⊤
2 , (gea , 0)H⊤

2

)
| ea ∈ F⌊

k+ℓ
2 ⌋

z

}
and

Lb :=

{(
eb, −(0, eb)H

⊤
2 , s2 − (0, geb)H⊤

2

)
| eb ∈ F⌈

k+ℓ
2 ⌉

z

}
.

By matching the second and third entry of each list element, the number of collisions is reduced.

A minor improvement for weak keys: A small fraction of the codes spanned by matrices H contain

subcodes with small, disjoint supports. For the sake of a conservative analysis, we assume that subcodes

that occur with probability at least 2−λ are available to the solver. These subcodes can be used to reduce

the list sizes moderately.

An alternative collision attack: An alternative collision attack is proposed in [15]. The van Oorschot-

Wiener algorithm [40] enables a reduction in the required memory. The estimates for the time complex-

ities confirm the security level of the parameters used by CROSS.

24

CROSS NIST Submission 2025

Expected security strength: In Section 4, Table 6 summarizes the costs of the combinatorial solvers

for R-SDP(G) as utilized by CROSS. For a detailed explanation of the attack parameters and formulae

for bit-complexity estimation, we refer the reader to the security guide [39].

3.2 Security of the Protocol

In the following, we present two forgery attacks derived from [9]. The former is adapted from [31] for

weighted challenges, while the latter is a new attack. The parameter choice is based on the complexity of

the latter. We then present a security proof for the protocol, showing that CROSS is EUF-CMA secure.

3.2.1 Forgery Attacks

In this section, we describe two forgeries. We conservatively estimate the cost of these forgeries in

terms of CROSS operations. In our analysis, one elementary operation corresponds to simulating several

instructions the prover would perform. In particular, we conservatively estimate the cost of a CROSS

operation as 25 instructions, as detailed at the end of this section. As we argue in Section 4, this allows

us to easily assess the cost of such attacks so that the recommended CROSS parameters meet the NIST

security categories.

First forgery: The first forgery we describe is relatively intuitive and attempts, for each round, to guess

the first challenge chall1 or the second challenge chall2 (or both). The cost of this attack is given in

the following proposition.

Proposition 6. The attack runs in average time O
(

1
Pα(t,w,p)

)
, where

Pα(t, w, p) =

min{w,α}∑
w′=max{0,w−t+α}

(
α
w′

)(
t−α
w−w′

)(
t
w

) (
1

p− 1

)(α−w′)+(w−w′)

.

The overall cost of the forgery is estimated by optimizing over α ∈ {0, . . . , t}.

Notice that the cost of the forgery of the previous proposition is in agreement with the optimal cheating

probability of a dishonest prover against the (t, w)-fixed-weight repetition of a (2, 2)-out-of-(p − 1, 2)

special sound protocol, as detailed in the security guide [39].

Second forgery: We now consider another forgery inspired by the attack in [31] to 5-pass schemes and

optimized for the fixed-weight variant in [9]. The attack makes use of the fact that the second challenge is

generated after the first challenge, and, furthermore, it is possible to generate multiple second challenges

without modifying the commitments or the first challenge value. This way, one can split the forgery into

two separate phases, where the overall cost is given by the sum of the two associated costs. Again, we

exploit the fixed weight of the second challenge to optimize the round selection.

Proposition 7. The attack runs in average time

O

(
min

t∗∈{0,...,t}

{
1

P1(t, t∗, p)
+

1

P2(t, t∗, w, p)

})
,

where

P1(t, t
∗, p) =

t∑
j=t∗

(
t

j

)(
1

p− 1

)j (
1− 1

p− 1

)t−j

,

P2(t, t
∗, w, p) = max

α∈{w,...,t}

t∑
j=t∗

(
t
j

) (
1

p−1

)j (
1− 1

p−1

)t−j

P1(t, t∗, p)

min{t−j,w}∑
w∗=max{0,α−j}

(
t−j
w∗

)(
j

α−w∗

)(
t
α

) (
j

w−w∗

)(
t
w

) .

25

CROSS NIST Submission 2025

Expected security strength: In Section 4, Table 7 summarizes the bit costs of the forgery attack

for the set of parameters provided for CROSS. For a detailed explanation of the forgery procedure and

formulae for running time estimation, we refer the reader to the security guide [39].

Finite regime considerations on forgery complexity: Providing parameters to match the NIST

security categories requires quantifying the effort of attacking CROSS in terms of Boolean operations

for comparison with the benchmark effort to be matched (breaking AES). Noting that a single forgery

attempt takes at least a SHAKE call, and SHAKE is more expensive than AES, we target forgery

probabilities slightly higher than that of guessing an AES key. Quantitative details are reported in the

security guide [39].

3.2.2 Security Proof

As shown in [8, 9], the Fiat-Shamir transform of an interactive proof that is special sound and honest-

verifier zero-knowledge is EUF-CMA secure. Proposition 1 proves that CROSS-ID is honest-verifier

zero-knowledge and (2, 2) special sound.

Theorem 8. CROSS is EUF-CMA secure.

Remark 9. In [9], the security is stated in expected polynomial time and not strict polynomial time.

This is due to the fact that for fixed-weight challenges, the knowledge extractors defined in [8, Lemma

3] and [2, Lemma 2], which are the basis of [9], work in expected polynomial time and are allowed to

reach exponential time. However, both extractors can be modified to be strict polynomial time at the

cost of a negligible loss in success probability, as shown in [9].

4 Parameters and Expected Security Strength

This section outlines the parameter selection process for CROSS. The primary concern was ensuring

the security of the system. Subsequently, we focused on selecting parameters that allow for efficient

arithmetic. Balancing signature size and speed, the parameter selection consists of two phases:

i) Select the code parameters p, n, k and restriction parameters z,m to meet the NIST categories 1,

3, and 5, defined via the cost of breaking AES with 128, 192, or 256-bit keys.

ii) Determine the optimal number of rounds t and weight w of the fixed-weight challenge vector

chall2.

Possible values for p, z as well as n, k and m: In the first phase of the parameter selection process, we

determined all (p, z)-pairs for which p prime with 17 ≤ p ≤ 2477 and z prime with z | p−1, i.e., F∗
p admits

a multiplicative subgroup of order z. For each such pair and code rates R in the range 0.3 ≤ R ≤ 0.7,

the minimal required code length n was determined such that the solvers reported in Section 3.1 yield

the targeted security levels. In the case of R-SDP(G), the parameter m, i.e., the size of the subgroup,

was also optimized.

Selecting code and restriction parameters: For the R-SDP variant of CROSS, we selected p = 127

and z = 7. While this choice incurs a slight penalty to signature size, it enables efficient arithmetic:

both p and z are Mersenne primes, enabling an efficient modular reduction without a divisor functional

unit. Furthermore, the elements of Fp and Fz are efficiently representable within a single byte.

The parameter m of the R-SDP(G) variant of CROSS provides additional flexibility in selecting param-

eters. We selected p = 509, as F∗
p admits a subgroup of order z = 127, enabling efficient Mersenne

26

CROSS NIST Submission 2025

arithmetic for computation over Fz. We furthermore use g = 2 as generator for R-SDP and g = 16 as

generator for R-SDP(G).

Possible values for t and w: In the second phase of the parameter selection process, we determined

valid (t, w)-pairs by selecting, for each possible t, the minimal w such that the cost of a forgery attack

exceeds the targeted security level. We limited t to a maximum of 1536 as this exceeds the global

minimum in signature size achievable for all instances. This global minimum results from the fact that

for a sufficiently large value of t, the compression obtained by bringing w closer to t is outweighed by

the sole increase of t.

Pruning for efficiency: For each NIST category, large sets of parameters are equivalent from a security

standpoint. This allows pruning the parameter sets according to efficiency considerations. Since public

and secret key are inherently of small size for CROSS (see Section 2.2.2), we selected the signature size as

the primary space parameter for balancing trade-offs. Indeed, considering signature plus public key sizes

does not alter the final results. For this phase, we use the number of rounds t as a proxy of the execution

time, as both the signature and verification time in CROSS are proportional to it, albeit through different

multiplicative factors.

Selecting number of rounds and challenge weight: For each NIST category, we propose three

parameter sets, serving three optimization corners: computational speed (referred to as fast) in the

signature and verification procedures, a balanced version (referred to as balanced) which aims for stability,

and a version aiming for small signature sizes (referred to as small). For the fast corner, we chose the

minimal number of rounds t applicable to achieve the desired security level. For the small corner, we

chose either the number of rounds t yielding the global minimum in signature size or a smaller number

of rounds t, resulting in at most 1.5% increase in signature size while decreasing the number of rounds

(and thus the runtime of signing and verification procedures) by up to 37%. For the balanced corner, we

chose an intermediate number of rounds yielding a reasonable trade-off in size and runtime.

Parameters sets: The final outcome of the parameter selection procedure is the set of parameters

reported in Table 4.

Expected security strength: Table 5 and Table 6 present the computational cost of a key recovery

attack against CROSS (see Section 3.1). The code parameters p, n, k and the restriction parameters z,m

are selected to achieve NIST categories 1, 3, and 5, respectively. Table 7 illustrates the computational

cost of forging a CROSS signature (see Section 3.2). The parameters t and w are selected to achieve the

NIST categories 1, 3, and 5, respectively. For further details, the reader is referred to the security guide

[39].

5 Implementation Techniques

5.1 Symmetric Primitives

The CSPRNG is used to generate pseudo-random bit-strings for the seed tree construction [14] or for

sampling uniformly algebraic objects, such as vectors and matrices. For our choice, we performed a com-

parative benchmark of AES-CTR-DRBG [7] and SHAKE, the extendable output function standardized

in NIST FIPS 202 [34].

The Hash function is used to construct a (Merkle-) tree of the commitments, to compute the digests from

which challenges are sampled and to compute the commitments. As suitable candidates, we considered

the NIST standard SHA-2 (standardized in [33]), SHA-3 and SHAKE (standardized in [34]) with digest

sizes of 2λ for each security level. We chose FIPS-202 based primitives over SHA-2 since

27

CROSS NIST Submission 2025

Table 4: Parameter choices, keypair and signature sizes recommended for both CROSS-R-SDP
and CROSS-R-SDP(G), assuming NIST categories 1, 3, and 5, respectively.

Algorithm and Optim.
p z n k m t w

Pri. Key Pub. Key Signature
Security Category Corner Size (B) Size (B) Size (B)

CROSS-R-SDP 1
fast 127 7 127 76 - 157 82 32 77 18432

balanced 127 7 127 76 - 256 215 32 77 13152
small 127 7 127 76 - 520 488 32 77 12432

CROSS-R-SDP 3
fast 127 7 187 111 - 239 125 48 115 41406

balanced 127 7 187 111 - 384 321 48 115 29853
small 127 7 187 111 - 580 527 48 115 28391

CROSS-R-SDP 5
fast 127 7 251 150 - 321 167 64 153 74590

balanced 127 7 251 150 - 512 427 64 153 53527
small 127 7 251 150 - 832 762 64 153 50818

CROSS-R-SDP(G) 1
fast 509 127 55 36 25 147 76 32 54 11980

balanced 509 127 55 36 25 256 220 32 54 9120
small 509 127 55 36 25 512 484 32 54 8960

CROSS-R-SDP(G) 3
fast 509 127 79 48 40 224 119 48 83 26772

balanced 509 127 79 48 40 268 196 48 83 22464
small 509 127 79 48 40 512 463 48 83 20452

CROSS-R-SDP(G) 5
fast 509 127 106 69 48 300 153 64 106 48102

balanced 509 127 106 69 48 356 258 64 106 40100
small 509 127 106 69 48 642 575 64 106 36454

Table 5: Bit-complexity estimates for solvers of R-SDP with parameters as used by CROSS.
More details, such as the optimal attack parameters, can be found in the security guide [39].

Parameter set
solutions

Collision Representation Shifted
(p, z, n, k) search technique representations

Category 1
2.1 150 162 143

(127, 7, 127, 76)

Category 3
1.0 213 229 207

(127, 7, 187, 111)

Category 5
1.4 281 301 274

(127, 7, 251, 150)

Table 6: Bit-complexity estimates for solvers of R-SDP(G) with parameters as used by CROSS.
More details, such as the optimal attack parameters, can be found in the security guide [39].

Parameter set
solutions

Collision Collision search with Analysis
(p, z, n, k, m) search small-support subcodes in [15]

Category 1
15.7 152 143 145

(509, 127, 55, 36, 25)

Category 3
2.8 217 210 212

(509, 127, 79, 48, 40)

Category 5
7.8 286 272 276

(509, 127, 106, 69, 48)

28

CROSS NIST Submission 2025

Table 7: Bit-complexity estimates for signature forgery with parameters as used by CROSS.
More details, such as the optimal attack parameters, can be found in the security guide [39].

R-SDP
Category 1 Category 3 Category 5

fast balanced short fast balanced short fast balanced short

t 157 256 520 239 384 580 321 512 832

w 82 215 488 125 321 527 167 427 762

forgery 128 128 128 192 192 192 256 256 256

R-SDP(G)
Category 1 Category 3 Category 5

fast balanced short fast balanced short fast balanced short

t 147 256 512 224 268 512 300 356 642

w 76 220 484 119 196 463 153 258 575

forgery 128 128 128 192 192 193 256 256 256

• they have a smaller executable code size in memory-constrained devices such as microcontrollers,

• they have a reduced area consumption in FPGA/ASIC implementations, thanks to the possibility

of sharing the SHA-3/SHAKE inner state logic between the CSPRNG and the Hash,

• they minimize the Boolean degree of the round function, allowing for greater degree of protection

against power side-channel attacks.

Choice for CSPRNG: For benchmarking the AES-CTR-DRBG, we consider a software implementation

of the AES block cipher and the usage of Intel AES-NI ISA extensions. Our benchmark results show

that the SHAKE extendable output functions yield better overall performances compared to the use of

AES-CTR-DRBG. CROSS hence uses SHAKE-128 for NIST security category 1 and SHAKE-256 for

NIST security categories 3 and 5.

Choice for Hash: Our benchmarks obtained a small execution time gain by employing SHA-2 (in the

few percentage points range) over SHA-3. To ensure collision resistance we use of SHAKE128 with a

256 bit output for category 1, and SHAKE256 with 384 and 512 bit output for categories 3 and 5,

respectively.

The selected SHAKE functions share the same collision resistance of SHA-3 instances with the same

output length (as stated in [34]), while processing the input information faster (thanks to their larger

rate parameter). SHAKE further improves on the required code complexity in software implementations

and reduces the number of dedicated hardware components for hashing and random number generation

to a single SHAKE128/SHAKE256 module.

We summarize the chosen primitives in Table 3.

Domain separation: To preserve the domain separation between SHAKE and SHA-3, which is built-in

in the primitive definitions in FIPS-202, we append a 16-bit integer to each input of CSPRNG and Hash

as mentioned in Section 2.3. For values ≥ 215 SHAKE is used as Hash, and for values < 215 SHAKE

is used as CSPRNG. The lower 15 bits are used to separate different CSPRNG and Hash instances if

necessary. In the cases where the lower 15 bits are specifically used for further separation are indicated

by the additional integer appended in the input of the corresponding Hash and CSPRNG calls. The 16

bit values are encoded in little endian byte order.

29

CROSS NIST Submission 2025

Constant time: We compute the amount of randomness which should be extracted from the CSPRNG

such that the rejection sampling processes we perform fail with a probability 2−λ. We provide in the

submission package a Python script which computes such values automatically for all our parameter sets.

Sampling elements: For sampling objects like vectors or matrices with elements in a particular finite

field, we perform rejection sampling using a fixed amount of randomness. In order to generate chall2

with a fixed weight, we shuffle a fix array using the Fisher-Yates algorithm [25].

Hashing elements: Whenever we need to hash one or multiple objects, we absorb them in bit-packed

representation if possible. More specifically, all vectors with elements in Fp or Fz are compressed as

explained in Section 5.4 when used as input to Hash.

ExpandSK: Given as input the seed of the secret key Seedsk, the function ExandSK outputs the secret

e ∈ Fn
z , as well as the public key H ∈ F(n−k)×n

p and in case of R-SDP(G) also eG ∈ Fm
z and M ∈ Fm×n

z .

The function ExpandSK performs exactly the same computations as KeyGen, with the only difference

that we do not need the syndrome s and do not need to compute e ∈ Fn
p .

In the case of R-SDP(G), we sample first M and then H. Furthermore, we sample V in transposed form,

i.e., column-wise, for more efficient access during multiplication. The pseudo-code for ExpandSK is given

in Algorithm 4.

Algorithm 4: ExpandSK(Seedsk)

Input: Seedsk: the seed of the secret key;

Output: e ∈ Fn
z secret vector;

H ∈ F(n−k)×n
p M ∈ Fm×n

z public matrices;

Data: λ: security parameter;

g ∈ F∗
p: generator of E;

1 (Seede, Seedpk)← CSPRNG–{0,1}2λ×{0,1}2λ (Seedsk | 3t+ 1)

// Sampling random matrices H and M

2
(W,V)← CSPRNG–Fm×(n−m)

z ×F(n−k)×k
p

(
Seedpk | 3t+ 2

)
V← CSPRNG–Fm×(n−m)

z ×F(n−k)×k
p

(
Seedpk | 3t+ 2

)
3 H← [V |Idn−k]

// Computing e

4

M← [W | Idm]

e← CSPRNG–Fn
z (Seede | 3t+ 3)eG ← CSPRNG–Fm

z (Seede | 3t+ 3)

e← eGM

// Return secret vector and public matrices

5 return (e, eG,H,M) (e,H)

5.2 Seed- and Merkle Tree

5.2.1 Tree Structures

We instantiate two tree structures for efficiency reasons. One instance is the seed tree (or GGM tree

[27]) to derive t round seeds Seed[i]. In this instance, the root of the tree consists of a randomly sampled

Seed, which is then expanded. Thus, the seed tree is computed from top to bottom.

The second instance is used in a Merkle tree fashion with the commitments cmt0[i] on its leaves, which

are then hashed to compute the root of the tree. Thus, this second tree instance is computed from bottom

30

CROSS NIST Submission 2025

to top. For the balanced and small versions, the trees serve the purpose of compressing the elements

required in the signature by computing a Path and (Merkle-) Proof, since w is close to t. In the fast

version, however, this technique yields no real benefit since w ∼ t/2. Nevertheless, we also employ two

trees with a different structure for computational efficiency.

Tree structures for balanced and small: In these versions the tree is constructed as a classical

binary tree where each parent node has two children resulting in a total of 2t− 1 nodes. As the number

of rounds t in CROSS are not always a power of two, the trees are truncated and constructed such that

the whole tree consists of multiple full binary sub-trees. Figure 3 depicts such a tree for the case of

t = 11. In this example, the tree consists of three sub-trees starting at nodes 1, 5 and 6 and are then

combined from right to left, i.e., from the smallest sub-tree to the largest. The leaves are marked with

double circles and the leftmost leaf (index 13) corresponds to the first round and the rightmost leaf

(index 6) corresponds to the last round in the ID-loop of the protocol.

Because of the truncation, moving through the tree is not as straightforward as in a full binary case

since not all leaves are on the same level. This truncated structure must also be taken into account when

moving from a parent to its children. To ease that, we make use of some small pre-computed arrays and

constants that are solely depending on t and define the trees structure. They are called

- npl for nodes per level;

- lpl for leaves per level;

- off for offsets, used to compute the parent/child index when moving between levels;

- lsi for leaves start indices;

- ncl for number consecutive leaves.

The lsi and ncl are small helper arrays that only have one entry per sub-tree. For instance, given the

example in Figure 3, the arrays would be defined as lsi = [13, 11, 6] and ncl = [8, 2, 1].

0

1

3

7

13 14

8

15 16

4

9

17 18

10

19 20

2

5

11 12

6

Figure 3: Exemplary tree structure for balanced and small versions for t = 11.

Tree structures for fast: For the fast version, we use a different tree construction, shown in Figure 4.

This tree consists of t+ 5 nodes and exactly three levels: A root node, then 4 intermediate nodes and t

leaves. This implies, that each intermediate node has ⌊t/4⌋ children, plus 1 optional child depending on

the value of t. More precisely, the remaining t mod 4 children are equally distributed among the first

three intermediate nodes, that is:

- node 1 has ⌊t/4⌋ plus 1 if t mod 4 > 0 children;

- node 2 has ⌊t/4⌋ plus 1 if t mod 4 > 1 children;

31

CROSS NIST Submission 2025

- node 3 has ⌊t/4⌋ plus 1 if t mod 4 > 2 children.

Although in this version, we do not make use of the compression mechanism, in the sense of sending a

standard Merkle proof or path in the seed tree, this structure allows to compute the four sub-trees in

parallel on a CPU with a wide vector register set.

0

1

5 7

2

8 10

3

11 13

4

14 15

Figure 4: Exemplary tree structure for the fast version for t = 11.

5.2.2 Tree Algorithms

SeedLeaves: Algorithm 5 describes the implementation of SeedLeaves for the balanced and small ver-

sions. The function takes as input a root seed Seed and a Salt and computes t round seeds Seed[i] from

it. SeedLeaves internally computes a tree of nodes with the structure described in Section 5.2.1. To do

so, the root is initialized with the root Seed. Then, proceeding from top to bottom and left to right,

each node is expanded into two children by appending the Salt and the 16-bit index of the node to the

seed of the node and feeding it into the CSPRNG that produces two seeds of λ bits. The 16-bit index

is passed in little endian byte order and helper arrays are used as described in Section 5.2.1 for proper

indexing within the truncated tree structure. Finally, the round seeds Seed[i] are composed of the leaves

of the tree.

Algorithm 5: SeedLeaves(Seed, Salt) – balanced and small versions

Input: Seed: the λ-bit root seed from which the whole tree is generated

Salt: a 2λ-bit salt

Output: (Seed[0], . . . , Seed[t− 1]): the t round seeds

Data: t: number of leaves (corresponds to the number of protocol rounds)

λ: security parameter (a seed is λ bits long)

npl[. . .]: number of nodes per level

lpl[. . .]: number of leaves per level

off[. . .]: offsets required to move between two levels in the unbalanced tree

1 T [0]← Seed

2 startNode← 0

3 for level from 0 to ⌈log2(t)⌉ − 1 do

4 for i from 0 to npl[level]− lpl[level]− 1 do

5 parent← startNode+ i

6 leftChild← LeftChild(parent)− off[level]

7 rightChild← leftChild+ 1

// expand parent seed, salt and parent index

8 T [leftChild], T [rightChild]← CSPRNG–{0,1}λ×{0,1}λ (T [parent] | Salt | parent)
9 startNode← startNode+ npl[level]

// return the leaves of the tree as round seeds

10 return Leaves(T)

32

CROSS NIST Submission 2025

For the fast version of CROSS, SeedLeaves generates a seed tree of only three levels, as shown in Al-

gorithm 6. It expands the root seed Seed into four intermediate seeds as shown in line 2, and then

each of the intermediate seeds into ⌊t/4⌋(+1) round seeds. Using four separate intermediate seeds al-

lows to parallelize the expansion of the t round seeds on a CPU with sufficiently wide vector registers.

Algorithm 6: SeedLeaves(Seed, Salt) – fast version

Input: Seed: the λ-bit root seed from which the whole tree is generated

Salt: a 2λ-bit salt

Output: (Seed[0], . . . , Seed[t− 1]): the t round seeds

Data: t: number of leaves (corresponds to the number of protocol rounds)

λ: security parameter (a seed is λ bits long)

1 T [0]← Seed

// expand root seed, salt and parent index, with co-domain {0, 1}4λ

2 T [1 : 4]← CSPRNG–{0,1}4λ (T [0] | Salt | 0)
// expand each intermediate seed with appended salt and index into final round seeds

// each Ti denotes a subset of T of size aλ where a = ⌊t/4⌋ when t mod 4 = 0, or

a = ⌊t/4⌋+ 1, when i < t mod 4, as described in Section 5.2.1

3 for i from 0 to 3 do

4 Ti ← CSPRNG–{0,1}aλ (T [i+ 1] | Salt | i+ 1)

5 return T [5 : t+ 4]

SeedPath: Algorithm 7 describes SeedPath for the small and balanced versions of CROSS. This function

takes the challenge chall2 to label a reference tree T ′ which indicates which nodes to pack into Path.

More specifically, it places the challenge bits chall2[i] on the leaves and updates the reference tree such

that a parent node is labeled to be published if both of its children are to be published. Afterwards,

SeedPath iterates through the tree from top to bottom and left to right and packs a node into the Path

if the node itself is to be revealed, while its parent is not to be revealed.

In the fast version of CROSS, SeedPath simply returns the leaves Seed[i], for i such that chall2[i] = 1,

of the squashed tree, as described in Algorithm 8.

In the actual C reference implementation, it is not required to re-generate the full seed tree again, but it

is given a pointer to the tree/leaves as constructed in SeedLeaves. The description given here is chosen

for a unified notation for both, fast and small/balanced versions of CROSS.

33

CROSS NIST Submission 2025

Algorithm 7: SeedPath(Seed, Salt, chall2) – balanced and small versions

Input: Seed: the λ-bit root seed from which the whole tree is generated

Salt: a 2λ-bit salt

chall2: the t-bit challenge denoting which leaves need to be revealed

Output: Path: the subset of nodes that allow re-computing the leaves corresponding to

chall2[i] = 1

Data: t: number of leaves (corresponds to the number of protocol rounds)

λ: security parameter (a seed is λ bits long)

npl[. . .]: number of nodes per level

off[. . .]: offsets required to move between two levels in the unbalanced tree

// Generate seed tree T
1 T ← ComputeSeedTree(Seed, Salt)

// Use flag tree T ′ to indicate which nodes to reveal

2 T ′ ← ComputeNodesToPublish(chall2)

3 startNode← 0, pubNodes← 0, Path← ∅
4 for level from 1 to ⌈log2(t)⌉ do
5 for i from 0 to npl[level]− 1 do

6 node← startNode+ i

7 parent← Parent(node) + off[level− 1]/2

// Reveal node if it is to publish but its parent is not

8 if T ′[node] = 1 and T ′[parent] = 0 then

9 Path[pubNodes]← T [node]
10 pubNodes← pubNodes+ 1

11 startNode← startNode+ npl[level]

12 return Path

Algorithm 8: SeedPath(Seed, Salt, chall2) – fast version

Input: Seed: the λ-bit root seed from which the whole tree is generated

Salt: a 2λ-bit salt

chall2: the t-bit challenge denoting which leaves need to be revealed

Output: (Seed[i])i:chall2[i]=1: The round seeds Seed[i] for which chall2[i] = 1

Data: t: number of leaves (corresponds to the number of protocol rounds)

λ: security parameter (a seed is λ bits long)

1 Seed[0], . . . , Seed[t− 1]← SeedLeaves(Seed | Salt)
2 return (Seed[i])i:chall2[i]=1

RebuildLeaves: This function re-generates the round-seeds Seed[i] given the Path, Salt and chall2.

As shown in Algorithm 9 for the balanced and small versions of CROSS, the reference tree is created just

as in SeedPath. The procedure starts to rebuild the tree from top to bottom, left to right by expanding

the nodes in the tree that were either given by the Path, or computed from expanding nodes from the

Path. Finally, it returns the corresponding leaves Seed[i] where i is such that chall2[i] = 1.

The fast version of RebuildLeaves is shown in Algorithm 10, which simply returns the corresponding

nodes from Path.

34

CROSS NIST Submission 2025

Algorithm 9: RebuildLeaves(Path, chall2, Salt) – balanced and small versions

Input: Path: the subset of nodes that allow re-computing the leaves corresponding to

chall2[i] = 1

chall2: the t-bit challenge denoting which leaves need to be regenerated

Salt: a 2λ-bit salt

Output: (Seed[i])i:chall2[i]=1: the leaves corresponding to chall2[i] = 1

Data: t: number of leaves (corresponds to the number of protocol rounds)

λ: security parameter (a seed is λ bits long)

npl[. . .]: number of nodes per level

lpl[. . .]: number of leaves per level

off[. . .]: offsets required to move between two levels in the unbalanced tree

// Use flag tree T ′ to indicate which nodes have been revealed

1 T ′ ← ComputeNodesToPublish(chall2)

2 T ← ∅
3 startNode← 0, pubNodes← 0, Path← ∅
4 for level from 1 to ⌈log2(t)⌉ do
5 for i from 0 to npl[level]− 1 do

6 node← startNode+ i

7 parent← Parent(node) + off[level− 1]/2

8 leftChild← LeftChild(node)− off[level]

9 rightChild← leftChild+ 1

// If node is in Path, copy it to tree

10 if T ′[node] = 1 and T ′[parent] = 0 then

11 T [node]← Path[pubNodes]

12 pubNodes← pubNodes+ 1

// Expand it if node is in the tree and not a leaf, with co-domain {0, 1}λ × {0, 1}λ

13 if T ′[node] = 1 and i < npl[level]− lpl[level] then

14 T [leftChild], T [rightChild]← CSPRNG–{0,1}λ×{0,1}λ (T [node] | Salt | node)
15 startNode← startNode+ npl[level]

16 return Leaves(T)[i]i:chall2[i]=1

Algorithm 10: RebuildLeaves(Path, chall2, Salt) – fast version

Input: Path: the subset of leaves corresponding to chall2[i] = 1

chall2: the t-bit challenge denoting which leaves need to be regenerated

Salt: a 2λ-bit salt, unused in the fast version

Output: (Seed[i])i:chall2[i]=1: the leaves corresponding to chall2[i] = 1

Data: t: number of leaves (corresponds to the number of protocol rounds)

λ: security parameter (a seed is λ bits long)

1 return Path[i]i:chall2[i]=1

TreeRoot: TreeRoot as given in Algorithm 11 (for balanced and small versions) and Algorithm 12 (for

the fast version) computes a root T [0] of a tree as described in Section 5.2.1, through iterative hashing.

By doing so, the commitments cmt0[i] are placed on the tree leaves and hashed either pairwise (balanced

and small versions) or in larger groups (fast version) from bottom to top.

35

CROSS NIST Submission 2025

Algorithm 11: TreeRoot(cmt0[0], . . . , cmt0[t− 1]) – balanced and small versions

Input: cmt0[i]: the 2λ-bit commitments of each of t rounds

Output: digestcmt0 : the Merkle root of the commitment tree

Data: t: number of leaves (corresponds to the number of protocol rounds)

λ: security parameter (a digest is 2λ bits long)

npl[. . .]: number of nodes per level

lsi[. . .]: leaves start indices for a set of consecutive leaves

off[. . .]: offsets required to move between two levels in the unbalanced tree

1 T ← PlaceOnLeaves(cmt0[0], · · · , cmt0[t− 1])

2 startNode← lsi[0]

3 for level from ⌈log2(t)⌉ to 1 do

4 for i from npl[level]− 2 to 0 step −2 do

5 leftChild← startNode+ i

6 rightChild← leftChild+ 1

7 parent← Parent(leftChild) + off[level− 1]/2

8 T [parent]← Hash(T [leftChild] | T [rightChild])
9 startNode← startNode− npl[level− 1]

10 return T [0]

Algorithm 12: TreeRoot(cmt0[0], . . . , cmt0[t− 1]) – fast version

Input: cmt0[i]: the 2λ-bit commitments of each of t rounds

Output: digestcmt0 : the Merkle root of the commitment tree

Data: t: number of leaves (corresponds to the number of protocol rounds)

λ: security parameter (a digest is 2λ bits long)

1 T [5 : t+ 4]← (cmt0[0], · · · , cmt0[t− 1])

// each Ti denotes a subset of T of size a2λ where a = ⌊t/4⌋ when t mod 4 = 0, or

a = ⌊t/4⌋+ 1, when i < t mod 4, as described in Section 5.2.1

2 for i from 0 to 3 do

3 T [i+ 1]← Hash(Ti)
4 T [0]← Hash(T [1 : 4])

5 return T [0]

TreeProof: Algorithm 13 shows the implementation of TreeProof for the small and balanced versions.

By utilizing a reference tree T ′ using ComputeNodesToPublish, the function packs those nodes into the

Proof that are required by the verifier to reconstruct the tree root, given their own subset of computed

leaf nodes. That is, only if one of the two children in the tree is being labelled to be re-computed by the

verifier, the corresponding sibling is packed into Proof. In doing so, the function moves through the tree

from bottom to top, right to left. It is noteworthy that the indices of nodes being packed into Proof

correspond exactly to the indices of the nodes in the Path as computed by TreePath.

Like for SeedPath, the re-computation of the Merkle tree in line 1 of Algorithm 13 is just for clarity, but

not done in the actual implementation.

Analogously to the seed tree functions, the fast version of TreeProof as shown in Algorithm 14 simply

selects a subset of the leaves cmt0[i], for i such that chall2[i] = 1.

36

CROSS NIST Submission 2025

Algorithm 13: TreeProof(cmt0, chall2) – balanced and small versions

Input: cmt0[i]: the 2λ-bit leaves for which a Merkle tree is computed

chall2: the t-bit challenge denoting which leaves need to be revealed

Output: Proof: the subset of nodes that allow re-computing the the Merkle root given the

leaves where chall2[i] = 0

Data: t: number of leaves (corresponds to the number of protocol rounds)

λ: security parameter (a digest is 2λ bits long)

npl[. . .]: number of nodes per level

lsi[. . .]: leaves start indices for a set of consecutive leaves

off[. . .]: offsets required to move between two levels in the unbalanced tree

// Generate Merkle tree T
1 T ← ComputeMerkleTree(cmt0)

// Use flag tree T ′ to indicate which nodes to reveal

2 T ′ ← ComputeNodesToPublish(chall2)

3 startNode← lsi[0], pubNodes← 0, Proof← ∅
4 for level from ⌈log2(t)⌉ to 1 do

5 for i from npl[level]− 2 to 0 step −2 do

6 node← startNode+ i

7 parent← Parent(node) + off[level− 1]/2

// add left sibling only if right one was computed but left was not

8 if T ′[node] = 0 and T ′[node+ 1] = 1 then

9 Proof[pubNodes]← T [node]
10 pubNodes← pubNodes+ 1

// add left sibling only if right one was computed but left was not

11 if T ′[node] = 1 and T ′[node+ 1] = 0 then

12 Proof[pubNodes]← T [node+ 1]

13 pubNodes← pubNodes+ 1

14 startNode← startNode− npl[level− 1]

15 return Proof

Algorithm 14: TreeProof(cmt0, chall2) – fast version

Input: cmt0[i]: the 2λ-bit leaves for which a squashed tree is computed

chall2: the t-bit challenge denoting which leaves need to be revealed

Output: Proof: the subset of nodes that allow re-computing the the root given the leaves

where chall2[i] = 0

Data: t: number of leaves (corresponds to the number of protocol rounds)

λ: security parameter (a digest is 2λ bits long)

1 return (cmt0[i])i:chall2[i]=1

RecomputeRoot: Given the Proof from the signature and chall2, the version of RecomputeRoot in

the balanced and small versions of CROSS recomputes the root of the Merkle tree as shown in Algorithm

15. To do so, the commitments cmt0[i], which are computed by the verifier, are first placed on the tree.

Afterwards, using the reference tree T ′, several nodes are hashed from bottom to top, right to left by

using nodes from the tree or the Proof.

The corresponding fast version of RecomputeRoot is shown in Algorithm 16. The verifier moves the nodes

from Proof to the corresponding locations within the array of commitments cmt0[i] and then returns the

root of the tree as generated in Algorithm 12.

37

CROSS NIST Submission 2025

Algorithm 15:RecomputeRoot(cmt0, Proof, chall2) – balanced and small versions

Input: cmt0[i]: the 2λ-bit leaves for which a Merkle tree is computed

Proof: the subset of nodes that allow re-computing the Merkle root given the leaves

where chall2[i] = 0

chall2: the t-bit challenge denoting which leaves have been revealed

Output: digestcmt0 : the root of the recomputed Merkle tree

Data: t: number of leaves (corresponds to the number of protocol rounds)

λ: security parameter (a digest is 2λ bits long)

npl[. . .]: number of nodes per level

lsi[. . .]: leaves start indices for a set of consecutive leaves

off[. . .]: offsets required to move between two levels in the unbalanced tree

// Initialize Merkle tree T
1 T ← PlaceCmtOnLeaves(cmt0, chall2)

// Use flag tree T ′ to indicate which nodes were revealed

2 T ′ ← ComputeNodesToPublish(chall2)

3 startNode← lsi[0], pubNodes← 0

4 for level from ⌈log2(t)⌉ to 1 do

5 for i from npl[level]− 2 to 0 step −2 do

6 node← startNode+ i

7 parent← Parent(node) + off[level− 1]/2

// Skip if both siblings are unused

8 if T [node] = 0 and T [node+ 1] = 0 then

9 continue

// add left sibling from tree or Proof

10 if T ′[node] = 1 then

11 leftChild← T [node]
12 else

13 leftChild← Proof[pubNodes]

14 pubNodes← pubNodes+ 1

// add right sibling from tree or Proof

15 if T ′[node+ 1] = 1 then

16 rightChild← T [node+ 1]

17 else

18 rightChild← Proof[pubNodes]

19 pubNodes← pubNodes+ 1

20 T [parent]← Hash(leftChild | rightChild)
21 startNode← startNode− npl[level− 1]

22 return T [0]

38

CROSS NIST Submission 2025

Algorithm 16: RecomputeRoot(cmt0, Proof, chall2) – fast version

Input: cmt0[i]: the 2λ-bit leaves for which a squashed tree is computed

Proof: the subset of nodes that allow re-computing the root given the leaves where

chall2[i] = 0

chall2: the t-bit challenge denoting which leaves have been revealed

Output: digestcmt0 : the root of the re-computed tree

Data: t: number of leaves (corresponds to the number of protocol rounds)

λ: security parameter (a digest is 2λ bits long)

// Initialize the leaves. For chall2[i] = 0, the cmt0[i] are already computed

1 pubNodes← 0

2 for i from 0 to t− 1 do

3 if chall2[i] = 1 then

4 cmt0[i]← Proof[pubNodes]

5 pubNodes← pubNodes+ 1

6 return TreeRoot(cmt0)

5.3 Parallelization of SHAKE

Given SHAKE’s central role as both a hash function and a CSPRNG in CROSS, we introduced support for

its AVX2-optimized implementation in round 2 [26]. SHAKE is built on the Keccak-f primitive, which

can be parallelized by leveraging the SIMD (Single Instruction, Multiple Data) capabilities of modern

CPUs.

The official Keccak repository [13] provides a four-way parallel implementation, enabling four indepen-

dent instances of SHAKE to be computed simultaneously. We utilized this implementation to speed up

three key areas in CROSS where many calls to SHAKE are performed in sequence: hashing commitments

at the end of each round in the identification protocol, the seed tree, and the Merkle tree.

Hashing commitments: The first case requires a simple queue: in the Fiat-Shamir transformation,

the rounds are inherently parallel and independent of one another, so we can enqueue the calls and hash

the commitments every four rounds, rather than during each individual round. When the number of

rounds, t, is not a multiple of four, the queue will have fewer than four calls at the end of the protocol.

In such cases, the serial version of Keccak is used to compute the remaining digests.

The other two cases (the seed tree and the Merkle tree) follow the same queuing principle, with only

slight adjustments to account for the tree structure.

Parallelized trees: Algorithm 5 demonstrates how the seed tree is constructed in the reference im-

plementation of CROSS. We start by placing the root seed in the first position of the tree, which is

linearized as a list of seeds. The tree is then traversed level by level, node by node, skipping the leaves.

Every node is input into SHAKE and the output is divided into its left and right children.

Algorithm 17 illustrates the same procedure in the AVX2-optimized implementation of CROSS, with the

differences highlighted in magenta. A queue is constructed by storing the positions of up to four parent

nodes (ins[. . .]) and their corresponding left children (outs[. . .]). The variable toExpand keeps track of

how many calls to SHAKE are currently in the queue.

When the queue is full, we empty it by calling the parallel version of SHAKE (called ParCSPRNG here).

The queue is also emptied when transitioning between tree levels to prevent expanding a parent seed

that has not yet been generated. In such cases, toExpand indicates the number of calls to the serial

version of the CSPRNG that remain to be executed.

39

CROSS NIST Submission 2025

Note that both the seed and Merkle tree structures in CROSS are unbalanced, as the number of leaves t

is not a power of two, meaning not all leaves are on the last level. Since the two tree structures are equal,

parallelizing the hashing operations in the Merkle tree follows the same approach. The key difference is

that calls to SHAKE are enqueued by traversing the tree in the opposite direction (from the leaves to

the root) hashing sibling nodes together to compute their parent as a digest.

Fast variants: Another operation that can benefit from the SIMD implementation of Keccak is the

seed tree generation for the fast variants of CROSS, described by Algorithm 6. In the AVX2-optimized

implementation, the for-loop performing four separate calls to the CSPRNG (at line 4) is replaced with a

single call to ParCSPRNG. Being able to parallelize these four calls is the reason for using the squashed

tree structure in CROSS-fast instead of using a fully linearized approach.

Algorithm 17: ParallelSeedLeaves(Seed, Salt) – balanced and small, AVX2

Input: Seed: the λ-bit root seed from which the whole tree is generated

Salt: a 2λ-bit salt

Output: (Seed[0], . . . , Seed[t− 1]): the t round seeds

Data: t: number of leaves (corresponds to the number of protocol rounds)

λ: security parameter (a seed is λ bits long)

npl[. . .]: number of nodes per level

lpl[. . .]: number of leaves per level

off[. . .]: offsets required to move between two levels in the unbalanced tree

1 T [0]← Seed

2 startNode← 0

// Enqueue the calls to the CSPRNG

3 toExpand← 0

4 ins← [0, 0, 0, 0]

5 outs← [0, 0, 0, 0]

6 for level from 0 to ⌈log2(t)⌉ − 1 do

7 for i from 0 to npl[level]− lpl[level]− 1 do

8 toExpand← toExpand+ 1

9 parent← startNode+ i

10 leftChild← LeftChild(parent)− off[level]

11 rightChild← leftChild+ 1

12 ins[toExpand− 1]← parent

13 outs[toExpand− 1]← leftChild

// add Salt and domain separator to the CSPRNG inputs

14 · · ·
// Call CSPRNG in batches of 4 (or less when changing tree level)

15 if toExpand = 4 or i = (npl[level]− lpl[level]− 1) then

16 T [outs[0]], . . . , T [outs[3]]← ParCSPRNG(toExpand, T [ins[0]], · · · , T [ins[3]])
17 toExpand← 0

18 startNode← startNode+ npl[level]

19 return Leaves(T)

5.4 Packing and Unpacking:

The syndrome in the public key s and the response vectors resp0, which are part of the signature, consist

of elements in Fp or Fz. For the chosen values of p and z, the maximum number of bits needed to store

40

CROSS NIST Submission 2025

el0 el1 el2 el3 el4 el5 el6 el7 ...

...

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
LSB LSB LSB LSB LSB LSB LSBMSB MSB MSB MSB MSB MSB MSB

Figure 5: Packing of elements with p = 127 or z = 127, s = {el0, ..., eln−k−1}, y = {el0, ..., eln−1}
and vG = {el0, ..., elm−1}

el0 el1 el2 el3 el4 el5 el6 el7 ...

...

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
LSB LSB LSB LSB LSB LSB LSB LSB LSBMSB MSB MSB MSB MSB MSB MSB MSB MSB

Figure 6: Packing of elements with p = 509, s = {el0, ..., eln−k−1}, y = {el0, ..., eln−1}

values in Fp (respectively Fz) does not require a number of bits that is a multiple of eight in general.

It is reasonable to store these values bit-packed to reduce signature and public key size. For the R-SDP

variant of CROSS, we therefore need

- ⌈(n− k) · 7/8⌉ bytes for the syndrome s;

- ⌈n · 7/8⌉ bytes per y in resp0;

- ⌈n · 3/8⌉ bytes per v in resp0.

For the R-SDP(G) variant of CROSS, we need

- ⌈(n− k) · 9/8⌉ bytes for the syndrome s;

- ⌈n · 9/8⌉ bytes per y in resp0;

- ⌈m · 7/8⌉ bytes per vG in resp0.

The elements are packed little endian, i.e. the least significant bit of the first element aligns with the

least significant bit of the first packed byte with all subsequent elements starting at the least significant

bit position unoccupied in the packed array.

The bit-packed pattern for Fp elements in the R-SDP variant of CROSS and Fz elements in the R-SDP(G)

variant of CROSS is shown in Figure 5, while the bit-packed pattern for Fp elements in the R-SDP(G)

variant of CROSS is depicted in Figure 6. Finally, Figure 7 shows the bit-packed pattern for Fz elements

in the R-SDP variant of CROSS.

We pad each packed vector with 0 to the next byte boundary and also check for this padding when

unpacking any vector.

el0 el1 el2 el3 el4 el5 el6 el7 ...

...

Byte 0 Byte 1 Byte 2
LSB LSB LSBMSB MSB MSB

Figure 7: Packing of elements with z = 7, v = {el0, ..., eln−1}

41

CROSS NIST Submission 2025

5.5 Efficient arithmetic for F7, F127, and F509

Implementing CROSS requires, besides the auxiliary CSPRNG and Hash function, a set of arithmetic

primitives which act on collections of either Fp or Fz elements. The simple nature of the arithmetic

operations allows for a straightforward constant time implementation. In particular, vector additions,

vector subtractions, and point-wise vector multiplications are realized by countable loops, with a compile-

time determined trip-count. Similarly, matrix-vector multiplications by either H or M are characterized

by countable nested loops sharing the data-independent execution time of the vector operations.

The only arithmetic operation which may be affected by a variable time implementation is the compu-

tation which, given a vector e = (e0, . . . , en−1) in Fz, computes the vector e = (e0, . . . , en−1) in Fp such

that for all 0 ≤ i < n we have ei = gei , where g is the generator of the restricted subgroup E.

A straightforward implementation would employ a square-and-multiply strategy, which is affected by

timing side-channel vulnerabilities. To avoid this issue, we resorted to two different techniques, depending

on whether z = 7 or z = 127, which are the only two values which we need to treat.

In the z = 7 case, we have that p = 127, and therefore its elements can be stored in a single byte,

encoded as in natural binary encoding. As a consequence, it is possible to fit the entire look-up table for

the seven values {g0, g1, . . . , g6} in a single, 64-bit register. A look-up in this single-register-sized table

takes constant time as the entire table is loaded, regardless of the value being looked up.

In the z = 127 case, we have that p = 509. As a consequence, for software implementations, two

bytes are required to represent an Fp element, and the table-based approach cannot be applied in the

same straightforward fashion, as for p = 127. To this end, we implement the gi operation through a

square-and-multiply approach, where all the values {g20 , g21 , . . . , g26} mod p are precomputed constants,

which are composed through a single arithmetic expression, where each power of two is selected via

an arithmetic predicated expression. The modular reductions are performed tree-wise to reduce their

number to a minimum.

A final note on the arithmetic employed to implement computations on both F7 and F127 concerns

the runtime data representation. We work, in both cases, performing reductions modulo 8 and 128

respectively, thus resulting in a double representation of the zero value (as 0 and 7 for F7, and as 0 and

127 for F127). This, in turn, effectively reduces the cost of the modular reductions to, at most, two shift

and add operations. The values with the double-zero representation are then normalized via a constant

time arithmetic expression before emission.

Reductions modulo 509: The % operator can be used in C to perform modular reductions, however,

some compilers translate it into an unsafe division instruction (especially when compiling with options

like -Os, i.e., optimize for size).

To avoid this, we implement reductions modulo p = 509 as a constant-time sequence of instructions:

first, we approximate the quotient with a multiplication and a bit shift by precomputed constants, then

perform a multiplication by p and a subtraction to find the remainder.

x mod p = x− ((x · µ)≫ β) · p

This Barrett-like reduction is described in detail in [41, Chapter 10-15]. For CROSS we use β = 40 and

µ = 2160140723, so that the operation works on all 32-bit positive integers.

42

CROSS NIST Submission 2025

Table 8: Computation time expressed in clock cycles for all CROSS primitives and variants.
Measurements collected via rtdscp on an Intel Core i7-12700K, clocked at 4.9GHz. The figures
are the results of the average of 10k tests (standard deviation below 1%), and were obtained
pinning the process to a P-core. The computer was running Debian GNU/Linux 12.

NIST Parameter KeyGen Sign Verify
Cat. Set (Mcycles) (Mcycles) (Mcycles)

1

CROSS-R-SDP-f 0.038 1.007 0.572
CROSS-R-SDP-b 0.040 2.013 1.270
CROSS-R-SDP-s 0.039 4.048 2.725

CROSS-R-SDP-(G)-f 0.020 0.687 0.422
CROSS-R-SDP-(G)-b 0.020 1.579 0.985
CROSS-R-SDP-(G)-s 0.020 3.137 1.971

3

CROSS-R-SDP-f 0.090 2.324 1.398
CROSS-R-SDP-b 0.089 4.171 2.776
CROSS-R-SDP-s 0.089 6.254 4.277

CROSS-R-SDP-(G)-f 0.041 1.555 0.982
CROSS-R-SDP-(G)-b 0.040 2.240 1.446
CROSS-R-SDP-(G)-s 0.040 4.195 2.832

5

CROSS-R-SDP-f 0.136 4.116 2.512
CROSS-R-SDP-b 0.136 7.042 4.752
CROSS-R-SDP-s 0.135 11.356 7.765

CROSS-R-SDP-(G)-f 0.068 2.580 1.634
CROSS-R-SDP-(G)-b 0.065 3.482 2.248
CROSS-R-SDP-(G)-s 0.067 6.197 4.059

5.6 Implementation Attacks

Currently, there are two works [37] and [32] investigating implementation attacks which both attack the

reference implementation of CROSS version 1.2 and target embedded platforms.

The first work proposes a passive power side-channel attack, that targets the input of the syndrome

computation [37]. One can recover single elements from u via a horizontal attack mounted on one round

of the protocol. It is then possible to recompute elements of the secret key vector e by using information

published with the signature.

This attack successfully recovers the entire secret key e from a single signing procedure for most parameter

sets and requires two signing operations for the R-SDP(G) 1 fast parameter set. The attack can be

impeded by either shuffling the execution order of the multiplications in the syndrome computation or

by masking the input data to the syndrome computation.

The second work proposes a fault attack on the reference tree T ′ used to determine which leaves are

to be published [32]. This attack recovers the entire secret key using a single fault by obtaining the

responses for both cases of the second challenge chall2 in a single round.

6 Detailed Performance Analysis

We benchmarked the performance of CROSS on aIntel Core i7-12700K, clocked at 4.9GHz, with 64GiB of

DDR5. The computer was running Debian GNU/Linux 12, and the benchmark binaries were compiled

43

CROSS NIST Submission 2025

with gcc 12.2.0 (Debian 12.2.0-14). The computation times are measured in clock cycles, the clock cycle

count has been gathered employing the rtdscp instruction, which performs instruction fencing. All

numbers of clock cycles reported were obtained as the average of 10k runs of the same primitive. All the

timings for CROSS were taken with respect to the current AVX2 optimized implementation.

We report in Table 8 the required number of clock cycles to compute the Keygen,Sign and Verify signature

algorithms. For CROSS the “f” letter in the parameter set denotes a “fast” optimization corner, “b” the

balanced one and “s” denotes a short (signature) optimization corner.

To provide a concrete grounding for practical use, we observe that the fast optimization corner of CROSS

achieves sub-millisecond signing and verification times for all categories and both R-SDP and R-SDP(G)

variants. Furthermore CROSS-R-SDP, for NIST security category 1 is well below a single millisecond for

signature creation (205µs) and verification (116µs) on the platform we employed for the benchmarks.

CROSS-R-SDP(G) performs even better, signing in 140µs, and verifying in 86µs.

Concerning the computational load of CROSS-R-SDP, about ≈ 60% of the time taken by the signature

primitive is spent computing either hashes or CSPRNGs. This computational load profile is essentially

the same during verification, as a result, in both cases, of the optimization of the arithmetic operations

with AVX2 vector instructions.

7 Known Answer Tests

Known Answer Tests (KAT) have been generated and are a separate archive. The submission package

contains facilities (in the Additional Implementation folder) to regenerate them, following the instructions

in the README file. We include the SHA-2-512 digests of the KAT requests and responses in the following.

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_77_13152.req

f4cfa7f574000affa3be37924cc6effa42f500d25dc86948797789bd240aeb65731b3fd91eee3b5cccecc0618bf8c2fc979fde7828718ae09b2ec8fc3c26f03a ./PQCsignKAT_106_48102.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_106_48102.req

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_153_50818.req

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_106_40100.req

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_83_22464.req

c5b8957851480247de83cd7048e6413b01f5c0690c7755609ddce2794db4d90d5e0168d10b461c159c85d7cae14963d16561c7ecbfdcf982289717f7eea42ca6 ./PQCsignKAT_77_12432.rsp

83f9e38b119901a2edb4e7705b670ecde5dca9323f3dc3809ad8676fac5aa134d2f69def08ec1e39c3cab70b41c0d5c01b9e1fd1a2efeb1db72cd2146d801c19 ./PQCsignKAT_153_53527.rsp

5f4c14bc96f59a4a8f8db755db82577522f854d43b0d5739bc621593a44a98d5db53f1464a51ee335deb0af893c3c0ebde4264b4b3b64fd6714ba6f317c5d8a4 ./PQCsignKAT_106_40100.rsp

db9b3a0d271039f014d3e6c2d836e20d9e36567275abbbe3e70692966a0eef72e60d2d3717978ef62334176d29a93cdb75a2e32016c50b50c95e6c4eb0b7fa56 ./PQCsignKAT_83_22464.rsp

aefb71960f7d0c698acd4270291101fbc0c4f0e845a80bd3e5f800ef28cf2275c01ed1373a1e847dbc20ba1fd296ecfad814101a147655e1d46092b13e3f55cd ./PQCsignKAT_54_11980.rsp

1d71834e43fff7bdae9aa5c7c267cd6603125a28a7dfb1bd7aa130beb4462efeebf139a9b992b4fd795dc9a3610d9715c1ddf91f735def8821da42bb13ed4049 ./PQCsignKAT_115_41406.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_106_36454.req

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_153_74590.req

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_115_41406.req

3e2d13a4da52aa164c33512a1c32ef28e13d0d1f2cffe834b3abbf3e96e20c7b32fedffde28a27e9bc4c63b3f9c8ad7ebb0c9599fda4131d7094113901ef5d61 ./PQCsignKAT_77_18432.rsp

01d95620f0ce69f43c7eebd43b862c709bfd640fd3de3752f09cf13ec7d0a90e484aab0c78e8998ce223e31b72e1df69e83da3fb449b3ce545b85a8df0f0395e ./PQCsignKAT_153_50818.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_54_9120.req

76d95454ca79b7b043912aaf2cf4542dbec8f170778bf807d144b9becd809614d0a68c017cd43162abf8a5d5cd944fff017560bd2fdbfa38bde9044ee3816a64 ./PQCsignKAT_83_20452.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_115_29853.req

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_77_12432.req

071f8947de8bb58e7f28c7153126316403904b15fb4eb7dacadceece5711e3320cfd2d7436c2e2bb151ce699fa5135caa14ae408ed74155419923dcf8e0f35e4 ./PQCsignKAT_54_9120.rsp

e7f9ddc7f1b61df38cb9d43e9411107cc4f7d69d3ee3690a3a0916df072a5da4de9fd88fd638b409f91bf212da32bc3f2e2ffc014ab4bacc6f07f3fe63326478 ./PQCsignKAT_54_8960.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_54_11980.req

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_54_8960.req

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_83_26772.req

67efaa028f9cf997301bc4d3003979e445e2c26e5a34ff55c53f093b3efc13633e3fc9e99cb135a173c5fac897c0aa9245d262abe98ab70930877de44b218945 ./PQCsignKAT_153_74590.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_83_20452.req

6368e6508aa7fcd70861f667cdb15086d00f15e9575f582a02ea147f5f82b5835ec4653b510df2196f168c74b011699928ee13c65987995d0b4cb4f36290f5b6 ./PQCsignKAT_83_26772.rsp

983717e527ae81eaa2ed40d9134daaddaad561964ee1e3d41158b590f0922d09a4c5331c75fb65b6e646dfdb7d60afaafcdb0ed09054c46b3fc80337fda04dcd ./PQCsignKAT_77_13152.rsp

73dead39ebb6a80505cb91ed3982011e5e5c323fc928a4c1188ee8d5bdd90e82bf524aa7fe12da548c9a000af70750172856997090b2fd3b070fa4c40f09f3fb ./PQCsignKAT_115_29853.rsp

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_115_28391.req

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_77_18432.req

a87eccf3d19fd50883d3a2c21435ac031e998c7d20f9ba81da57a70b9709f99b77fef37cae8856740002e15c46d2873348a9b37ad07a59659076b5e8a46a8458 ./PQCsignKAT_153_53527.req

d3bfb762e670ec93468cfe55a37485cb5734243083209a664690bb7ffdc5a13d08f9e4d2147f386659e0602ece6e51515a4a20f1e77d952e59973b8245ad9cce ./PQCsignKAT_115_28391.rsp

03f78bb762b144465adddbf0454e1d581c0bf5f1a0d97845018ed2a7b162dc685eb2ce41555feb27d4e92913a182bc7182243d7d2df0d48d4b6840d5a1562489 ./PQCsignKAT_106_36454.rsp

44

CROSS NIST Submission 2025

8 Advantages and Limitations

Advantages:

• Due to the use of restricted errors, generic decoders have an increased cost compared to generic

decoders in the Hamming metric. As our thorough security analysis [39] shows, this allows us to

choose smaller parameters to achieve the same security level. We have adapted the best-known

techniques from classical ISD algorithms, subset-sum solvers and considered algebraic attacks.

• By leveraging a ZK protocol, we do not require any code with algebraic structure and thus do not

rely on any indistinguishability assumption. The used code is chosen uniformly at random and is

made public. Since the secret is given by the randomly chosen restricted error vector, an adversary

faces an NP-hard problem: either R-SDP or R-SDP(G).

• The ZK protocol CROSS-ID follows the well-established structure of CVE [19], which is a well-

known and studied protocol. The resulting signature scheme is provable EUF-CMA secure.

• The choice of a ZK protocol allows for a flexible choice of parameters, trading performance for

signature size and vice versa.

• We considered the attack in [31] and a novel forgery attack for fixed-weight challenges from [9].

We considered the computational improvements of this work and designed the system parameters

conservatively.

• Restricted error vectors and their transformations can be compactly represented, which signifi-

cantly reduces the signature sizes compared to other settings, such as when using fixed Hamming

weight error vectors.

• The fully random parity-check matrix can be derived on the fly from a small seed using a CSPRNG.

This allows us to compress the public key to ≤ 153 B, which means the signature scheme is suitable

for highly memory-constrained devices such as smartcards. Furthermore, the small public key size

and sub-10 kB signature sizes endorse its use in X.509 certificates.

• The transformations of restricted vectors do not require permutations, which ensures a simplified

constant-time implementation.

• Since roughly half of the operations are performed in a smaller field, Fz, the computations are less

expensive than in other schemes which use the full ambient space.

• Due to the order of the ambient spaces Fp and Fz being either a Mersenne prime or close to one,

CROSS enjoys fast arithmetic and achieves fast signature generation and verification.

• Since CROSS only chooses two different ambient spaces, namely (p = 127, z = 7) and (p = 509, z =

127), the code size and area of its realization are more compact concerning schemes that require

tailored arithmetic for each NIST security category.

• For the R-SDP variant of CROSS, the choice of z is small enough to allow expensive operations to

be performed via a constant-time table lookup, as the entire table fits into a (64-bit) register.

• CROSS only requires simple operations, such as symmetric primitives (CSPRNGs and crypto-

graphic hashes) and vector/matrix operations among small elements. This also allows for a

straightforward constant-time implementation of the scheme.

• The nature of the arithmetic operation in CROSS allows efficient vectorization with ISA extensions

such as Intel’s AVX2: the computation of the arithmetic operations, when vectorized, reduces the

amount of time spent in them to a minority in the overall signature time

• Only a single standardized primitive (SHAKE, as per FIPS-202) is required in each CROSS im-

plementation, reducing both hardware and software implementation complexity.

45

CROSS NIST Submission 2025

Limitations:

• The achieved signature sizes are still in the range of 9 kB for NIST category 1, which is larger

than the standardized signatures Falcon and Dilithium but only slightly larger than those of

SPHINCS+. This range of signature sizes is to be expected from a signature scheme derived

through a ZK protocol.

• The restricted syndrome decoding problem is relatively new [4], but closely related to the classical

syndrome decoding problem and the subset sum problem, both of which are well studied in liter-

ature [10, 11]. Due to this relation, the best-known solvers for R-SDP [5, 16] are modifications of

the best-known solvers for SDP and the subset sum problem.

9 Bibliography

[1] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In International

Colloquium on Automata, Languages, and Programming, pages 403–415. Springer, 2011.

[2] Thomas Attema and Serge Fehr. Parallel repetition of (k1, . . . , kµ)-special-sound multi-round in-

teractive proofs. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology –

CRYPTO 2022, pages 415–443, Cham, 2022. Springer Nature Switzerland.

[3] Thomas Aulbach, Samed Düzlü, Michael Meyer, Patrick Struck, and Maximiliane Weishäupl. Hash

your keys before signing: BUFF security of the additional NIST PQC signatures. In International

Conference on Post-Quantum Cryptography, pages 301–335. Springer, 2024.

[4] Marco Baldi, Massimo Battaglioni, Franco Chiaraluce, Anna-Lena Horlemann, Edoardo Persichetti,

Paolo Santini, and Violetta Weger. A new path to code-based signatures via identification schemes

with restricted errors. Advances in Mathematics of Communications, 2025.

[5] Marco Baldi, Sebastian Bitzer, Alessio Pavoni, Paolo Santini, Antonia Wachter-Zeh, and Violetta

Weger. Zero knowledge protocols and signatures from the restricted syndrome decoding problem.

PKC 2024, 2024.

[6] Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Vincent Neiger, Olivier Ruatta,

and Jean-Pierre Tillich. An algebraic attack on rank metric code-based cryptosystems. In Annual

International Conference on the Theory and Applications of Cryptographic Techniques, pages 64–93.

Springer, 2020.

[7] Elaine Barker and John Kelsey. NIST SP 800-90A Rev. 1 - Recommendation for Random Number

Generation Using Deterministic Random Bit Generators. https://csrc.nist.gov/publications/

detail/sp/800-90a/rev-1/final, 2015.

[8] Michele Battagliola, Riccardo Longo, Federico Pintore, Edoardo Signorini, and Giovanni Tognolini.

Security of fixed-weight repetitions of special-sound multi-round proofs. Cryptology ePrint Archive,

Paper 2024/884, 2024.

[9] Michele Battagliola, Riccardo Longo, Federico Pintore, Edoardo Signorini, and Giovanni Tognolini.

A revision of CROSS security: Proofs and attacks for multi-round fiat-shamir signatures. Cryptology

ePrint Archive, Paper 2025/127, 2025.

[10] Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic algorithms for hard knap-

sacks. In Annual International Conference on the Theory and Applications of Cryptographic Tech-

niques, pages 364–385. Springer, 2011.

46

https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final

CROSS NIST Submission 2025

[11] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random binary

linear codes in 2n/20: How 1+ 1= 0 improves information set decoding. In Advances in Cryptology–

EUROCRYPT 2012: 31st Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings 31, pages 520–536. Springer,

2012.

[12] Daniel J Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding exponents: ball-collision

decoding. In Advances in Cryptology–CRYPTO 2011: 31st Annual Cryptology Conference, Santa

Barbara, CA, USA, August 14-18, 2011. Proceedings 31, pages 743–760. Springer, 2011.

[13] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer. eXtended

Keccak Code Package. https://github.com/XKCP/XKCP.

[14] Ward Beullens. Sigma protocols for MQ, PKP and SIS, and fishy signature schemes. In Annual

International Conference on the Theory and Applications of Cryptographic Techniques, pages 183–

211. Springer, 2020.

[15] Ward Beullens, Pierre Briaud, and Morten Øygarden. A security analysis of restricted syndrome

decoding problems. Cryptology ePrint Archive, Paper 2024/611, 2024.

[16] Sebastian Bitzer, Alessio Pavoni, Violetta Weger, Paolo Santini, Marco Baldi, and Antonia Wachter-

Zeh. Generic decoding of restricted errors. In 2023 IEEE International Symposium on Information

Theory (ISIT), pages 246–251. IEEE, 2023.

[17] Giacomo Borin, Edoardo Persichetti, Paolo Santini, Federico Pintore, and Krijn Reijnders. A guide

to the design of digital signatures based on cryptographic group actions. Cryptology ePrint Archive,

Paper 2023/718, 2023.

[18] Alessio Caminata and Elisa Gorla. Solving degree, last fall degree, and related invariants. Journal

of Symbolic Computation, 114:322–335, 2023.

[19] Pierre-Louis Cayrel, Pascal Véron, and Sidi Mohamed El Yousfi Alaoui. A zero-knowledge iden-

tification scheme based on the q-ary syndrome decoding problem. In International Workshop on

Selected Areas in Cryptography, pages 171–186. Springer, 2010.

[20] André Chailloux. On the (In) security of optimized Stern-like signature schemes. In Proceedings of

WCC 2022: The Twelfth International Workshop on Coding and Cryptography, March 7 - 11, 2022,

Rostock (Germany). URL: https: // www. wcc2022. uni-rostock. de/ storages/ uni-rostock/

Tagungen/ WCC2022/ Papers/ WCC_ 2022_ paper_ 54. pdf , 2022.

[21] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient algorithms for

solving overdefined systems of multivariate polynomial equations. In International Conference on

the Theory and Applications of Cryptographic Techniques, pages 392–407. Springer, 2000.

[22] Il’ya Isaakovich Dumer. Two decoding algorithms for linear codes. Problemy Peredachi Informatsii,

25(1):24–32, 1989.

[23] Jean-Charles Faugere. A new efficient algorithm for computing Gröbner bases (F4). Journal of pure

and applied algebra, 139(1-3):61–88, 1999.

[24] Jean Charles Faugere. A new efficient algorithm for computing Gröbner bases without reduction to

zero (F 5). In Proceedings of the 2002 international symposium on Symbolic and algebraic compu-

tation, pages 75–83, 2002.

47

https://github.com/XKCP/XKCP
https://www.wcc2022.uni-rostock.de/storages/uni-rostock/Tagungen/WCC2022/Papers/WCC_2022_paper_54.pdf
https://www.wcc2022.uni-rostock.de/storages/uni-rostock/Tagungen/WCC2022/Papers/WCC_2022_paper_54.pdf

CROSS NIST Submission 2025

[25] Ronald Aylmer Fisher and Frank Yates. Statistical tables for biological, agricultural and medical

research. Oliver and Boyd, London, 3rd ed., rev. and enl edition, 1948.

[26] Marco Gianvecchio, Alessandro Barenghi, and Gerardo Pelosi. Towards efficient post-quantum

signatures: parallelizing keccak in CROSS and contributing to open-source libraries. Master’s

thesis, Politecnico di Milano, October 2024. https://hdl.handle.net/10589/227057.

[27] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM,

33(4):792–807, August 1986.

[28] Cheikh Thiécoumba Gueye, Jean Belo Klamti, and Shoichi Hirose. Generalization of BJMM-ISD

using May-Ozerov nearest neighbor algorithm over an arbitrary finite field Fq. In International

Conference on Codes, Cryptology, and Information Security, pages 96–109. Springer, 2017.

[29] Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack problem.

Journal of the ACM (JACM), 21(2):277–292, 1974.

[30] Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In Advances

in Cryptology – EUROCRYPT 2010, pages 235–256. Springer, 2010.

[31] Daniel Kales and Greg Zaverucha. An attack on some signature schemes constructed from five-pass

identification schemes. In Cryptology and Network Security: 19th International Conference, CANS

2020, Vienna, Austria, December 14–16, 2020, Proceedings, pages 3–22. Springer, 2020.

[32] Puja Mondal, Supriya Adhikary, Suparna Kundu, and Angshuman Karmakar. ZKFault: Fault

attack analysis on zero-knowledge based post-quantum digital signature schemes. Cryptology ePrint

Archive, Paper 2024/1422, 2024.

[33] National Institute of Standards and Technology. FIPS 180-4 - Secure Hash Standard (SHS). https:

//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf, 2015.

[34] National Institute of Standards and Technology. FIPS 202 - SHA-3 Standard: Permutation-

Based Hash and Extendable-Output Functions. https://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.202.pdf, 2015.

[35] NIST Post quantum standardization effort mailing list. Footguns as an axis for secu-

rity analysis. https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/l2iYk-8sGnI/m/

sHWyfvfNDAAJ.

[36] OQS Team. Open Quantum Safe. https://openquantumsafe.org/liboqs/algorithms/.

[37] Jonas Schupp and Georg Sigl. A horizontal attack on the codes and restricted objects signature

scheme (CROSS). Cryptology ePrint Archive, Paper 2025/116, 2025.

[38] Jacques Stern. A method for finding codewords of small weight. In International Colloquium on

Coding Theory and Applications, pages 106–113. Springer, 1988.

[39] The CROSS Team. CROSS: Security details. https://www.cross-crypto.com/resources.html,

2025. Included in the submission package.

[40] Paul C Van Oorschot and Michael J Wiener. Parallel collision search with cryptanalytic applications.

Journal of cryptology, 12:1–28, 1999.

[41] Henry S. Warren. Hacker’s Delight. Addison-Wesley Professional, 2nd edition, 2012.

48

https://hdl.handle.net/10589/227057
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/l2iYk-8sGnI/m/sHWyfvfNDAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/l2iYk-8sGnI/m/sHWyfvfNDAAJ
https://openquantumsafe.org/liboqs/algorithms/
https://www.cross-crypto.com/resources.html

CROSS NIST Submission 2025

[42] Violetta Weger, Karan Khathuria, Anna-Lena Horlemann, Massimo Battaglioni, Paolo Santini,

and Edoardo Persichetti. On the hardness of the Lee syndrome decoding problem. Advances in

Mathematics of Communications, 2022.

49

	Design Rationale and Notation
	 in a Nutshell
	Notation
	Basics

	Procedural Description of CROSS-ID and CROSS
	CROSS-ID
	CROSS Protocol
	Key Generation
	Signature Generation
	Verification

	Auxiliary Primitives

	Security
	Hardness of Restricted Decoding
	Underlying Hardness Assumptions
	Combinatorial Solvers for R-SDP
	Algebraic Solvers for R-SDP
	Solvers for R-SDP()

	Security of the Protocol
	Forgery Attacks
	Security Proof

	Parameters and Expected Security Strength
	Implementation Techniques
	Symmetric Primitives
	Seed- and Merkle Tree
	Tree Structures
	Tree Algorithms

	Parallelization of SHAKE
	Packing and Unpacking:
	Efficient arithmetic for , and
	Implementation Attacks

	Detailed Performance Analysis
	Known Answer Tests
	Advantages and Limitations
	Bibliography

